
DAAAM INTERNATIONAL SCIENTIFIC BOOK 2024 pp. 103-116 Chapter 08 
 

 

ANALYSIS OF COMMUNICATION 
PROTOCOLS IN MULTI-AGENT SYSTEMS 

 
DRASKO, B. & RAKIC, K. 

 
Abstract: The use of Multi-Agent Systems (MAS) in different fields of implementation 
comes with challenges. Some systems are generally more complex, while some do not 
require robust infrastructure. In both cases, choosing the appropriate MAS 
communication protocol is essential. This paper aims to list and explain the key 

protocols such as FIPA-ACL, KQML, MQTT, AMQP, WebRTC, and CoAP. Analysis 

and comparison between protocols will be presented by showing their strengths and 
weaknesses. For example, FIPA-ACL and KQML are flexible in agent coordination, 
while lightweight protocols like MQTT and CoAP are ideal for resource-constrained 
systems such as IoT. Additionally, the paper discusses the performance and security 
trade-offs of using peer-to-peer protocols like WebRTC and robust messaging systems 
like RabbitMQ. The paper will provide guidelines for selecting the appropriate 
protocol based on system requirements, considering efficiency and reliability in MAS 
applications.  
 
 
Key words: MAS, FIPA-ACL, KQML, MQTT, AMQP 
 

 

 

 

 
 

 

Authors´ data: Dipl.-Ing. Drasko, B[oris]*; Assist. Prof. Dr. Sc. Rakic, K[resimir]*, 

* University of Mostar, Trg hrvatskih velikana 1, 88000, Mostar, Bosnia and 

Herzegovina, boris.drasko@sum.ba, kresimir.rakic@fsre.sum.ba 
 

This Publication has to be referred as: Drasko, B[oris] & Rakic, K[resimir] (2024). 

Analysis of Communication Protocols in Multi-Agent Systems, Chapter 08 in 

DAAAM International Scientific Book 2024, pp.103-116, B. Katalinic (Ed.), 

Published by DAAAM International, ISBN 978-3-902734-42-6, ISSN 1726-9687, 

Vienna, Austria 

DOI: 10.2507/daaam.scibook.2024.08

103



Drasko, B. & Rakic, K.: Analysis of Communication Protocols in Multi-Agent Sys… 

 

1. Introduction 

 

When designing a MAS, the question arises as to which protocol to use 

considering various circumstances such as the complexity and robustness of the system 

and available resources. The purpose of this paper is to provide a detailed analysis of 

multi-agent protocols used in inter-agent communication so that practitioners can 

easily evaluate and compare different protocols and accordingly decide which best 

suits their needs when designing MAS. 

Every Agent in MAS has a specific goal and an assigned task. For MAS to work 

efficiently Agents need to exchange information, coordinate action and ultimately 

make decisions based on the information collected, to achieve collective goals set. To 

simplify, Agents need a way to communicate with each other, thus making 

communication a fundamental component of MAS. Communication protocols for 

MAS have been developed over the years, each designed to meet specific requirements 

in various operational environments. 

Historically, Agent Communication Language (ACL) such as FIPA-ACL was 

developed by the Foundation for Intelligent Physical Agents (FIPA), a standards 

organization established to promote interoperability among agent-based systems. It is 

one of the most widely used protocols for agent communication. It supports 

communicative acts such as requesting, informing, and proposing, thus facilitating 

flexible and complex agent interaction (FIPA, 1997).  

Another ACL developed in the early 1990s by researcher Tim Finin and his team 

is KQML (Knowledge Query and Manipulation Language). It was designed for 

knowledge sharing and query exchange, but it was replaced by FIPA-ACL due to its 

wider adoption and clearer semantics (Finin et. al., 1994). 

Some of the non-ACL protocols that are widely used for Agent Communication 

are MQTT (Message Queuing Telemetry Transport), AMQP (Advanced Message 

Queuing Protocol), WebRTC (Web Real-Time Communication) and CoAP 

(Constrained Application Protocol).  

It’s important to note that the difference between ACLs and non-ACLs is that the 

ACLs were primarily developed with a focus on inter-agent communication based on 

speech act theory (Austin, 1962). 

In essence, it means that these protocols were based on human interaction and can 

handle complex interactions such as agreements, negotiations and task delegation 

between agents (Rygallo et al., 2009). 

Non-ACLs, on the other hand, are not capable of complex semantic understanding 

but focus on data transmission and reliable messaging.  

 

2. Key Communication Protocols in MAS 

 

We can arrange communication protocols in MAS by categories, as follows: 

• Agent Communication Languages (ACL): FIPA-ACL, KQML. 

• Publish-Subscribe Protocols: MQTT, AMQP. 

• Peer-to-Peer (P2P) Protocols: WebRTC. 

• Request-Response Protocols: HTTP/REST, CoAP. 

104



DAAAM INTERNATIONAL SCIENTIFIC BOOK 2024 pp. 103-116 Chapter 08 
 

 

• Shared Memory Systems: Tuple Spaces. 

• Messaging Systems: JADE, RabbitMQ. 

• Security Protocols: TLS, Blockchain-Based. 

 

In the following sections, a detailed analysis of each protocol by category is 

presented, the mode of functioning, their advantages and disadvantages are explained, 

and a comparison of existing protocols is given. 

 

3. Agent Communication Languages 

 

3.1 FIPA-ACL 

FIPA ACL uses a performative messaging system to relay not only the data but 

also the intent behind it. A performative message carries intent behind it in the form of 

a request, inform, propose, confirm, or reject. An agent who receives the message can 

thus recognize the intent behind the message and can make informed decisions and 

respond to that intent based on the context of communication.  

 

Structure of FIPA-ACL message includes: (FIPA, 2002): 

• Performative. Defines the intended purpose of the message (e.g., request, inform, 

query, propose).  

• Sender. Identifies the agent sending the message. 

• Receiver. Identifies the recipient(s) of the message. 

• Content. The actual information being exchanged or the subject of the message. 

• Language. Specifies the language used to express the content (e.g., Prolog, XML, 

…). 

• Ontology. Defines the vocabulary and the domain of discourse that both agents must 

understand for meaningful communication. 

• Protocol. Specifies the interaction protocol to manage the sequence of message 

exchanges (e.g., a negotiation or auction protocol). 

• Conversation ID. Allows the agents to identify and track a specific conversation. 

• Reply With. Used when the sender expects a response to the message. 

• In Reply To. Provides a reference to the original message when sending a response. 

• Reply By. A timestamp indicating when a reply is expected. 

 

FIPA-ACL can be implemented with use of various programming languages 

including Java, Python, C++,  Prolog. It is best used in complex systems distributed 

multi-agent systems where autonomous agents need to exchange semantically rich, 

structured information to coordinate, negotiate, or collaborate dynamically, such as in 

smart cities, supply chain management, or autonomous robotics. 

 

Here are the key disadvantages of using FIPA ACL (Bordini et al.,2005): 

105



Drasko, B. & Rakic, K.: Analysis of Communication Protocols in Multi-Agent Sys… 

 

• Complexity. FIPA ACL’s structured message format and performatives can add 

complexity to agent development, making implementation more challenging, 

especially for simple systems. 

• Overhead. The abstraction and richness of communication in FIPA ACL can 

introduce overhead, which may not be suitable for real-time or resource-constrained 

environments that require fast, low-latency communication. 

• Limited Adoption. Despite being a standard, FIPA ACL is not widely adopted across 

many industries, limiting available support, tools, and community resources for 

developers. 

• Interoperability Issues. Although FIPA ACL aims to promote interoperability 

between agents, differences in ontology, language, or agent platforms can still lead 

to communication problems if not carefully managed. 

• Performance. FIPA ACL’s higher-level communication protocol may lead to 

inefficiencies in systems that require high throughput and minimal delay, such as 

real-time financial trading or industrial automation. 

 

3.2 KQML 

A KQML message consists of (Finin et.al., 1994): 

• Performative. Indicates the communicative intent (e.g., ask, tell, achieve). 

• Sender. The agent sending the message. 

• Receiver. The intended recipient(s). 

• Content. The information or query being communicated. 

• Language. Specifies the language used in the content. 

• Ontology. Defines the vocabulary for shared understanding. 

Key features of KQML include: 

• Message Wrapping. KQML allows flexible message wrapping for a range of 

communicative acts. 

• Content Agnosticism. Separates message content from its structure, enabling varied 

data exchanges. 

Some of the advantages of using KQML are: 

• Simplicity. Easier to implement than more complex communication languages like 

FIPA ACL. 

• Flexibility. Supports diverse content languages, making it versatile for different 

domains. 

• Expressiveness. Covers a wide range of communicative acts (e.g., querying, 

informing, commanding). 

Using KQML also brings certain disadvantages: 

• Lack of Semantics. KQML does not enforce strong semantics, which can cause 

interpretation inconsistencies. 

• No Built-In Interaction Protocols. Unlike FIPA ACL, it lacks predefined protocols 

for agent interactions. 

• Limited Adoption. Its use has diminished in favour of more structured alternatives 

like FIPA ACL. 

106



DAAAM INTERNATIONAL SCIENTIFIC BOOK 2024 pp. 103-116 Chapter 08 
 

 

3.3 Comparison of FIPA ACL and KQML 

While KQML is simpler and more flexible, FIPA ACL offers more structured 

communication with built-in interaction protocols and stronger semantics. KQML is 

suitable for lightweight communication needs, while FIPA ACL is better for more 

complex multi-agent environments. 

 

4. Publish-Subscribe Protocols 

 

 Publish-Subscribe (Pub-Sub) protocols are used for efficient and scalable 

message distribution. Two commonly used Pub-Sub protocols are MQTT and AMQP. 

 

4.1 Message Queuing Telemetry Transport 

Message Queuing Telemetry Transport (MQTT) is a lightweight Pub-Sub 

protocol developed for low-bandwidth, high-latency, and unreliable networks, 

commonly used in IoT applications (Banks & Gupta, 2014). MQTT uses a central 

broker that receives messages from publishers and forwards them to subscribers based 

on topics. The publisher and subscriber are completely decoupled, allowing for flexible 

and dynamic communication. 

 

MQTT supports three levels of Quality of Service (QoS): 

• QoS 0 (At most once). The message is sent once and may be lost if the network fails. 

• QoS 1 (At least once). The message is guaranteed to be delivered but may be 

duplicated. 

• QoS 2 (Exactly once). Ensures that the message is received exactly once, making it 

suitable for critical data transmission. 

Advantages of using MQTT include: 

• Low overhead. Ideal for resource-constrained devices. 

•  Simple to implement. The protocol is easy to integrate into systems with limited 

capabilities. 

• Scalability. Supports large-scale deployments with minimal resource consumption. 

Disadvantages of using MQTT are: 

• No built-in message persistence. Messages may be lost if the broker fails. 

• Basic security. MQTT relies on external protocols (e.g., TLS) for security features. 

 

4.2 Advanced Message Queuing Protocol 

Advanced Message Queuing Protocol (AMQP) is a robust messaging protocol 

designed for enterprise-grade systems requiring high reliability and advanced features. 

Unlike MQTT, AMQP provides more complex messaging patterns and guarantees 

message delivery (Ayanoglu et al., 2017). 

AMQP uses a broker to route messages between publishers and subscribers, but 

offers more sophisticated message exchange patterns like queues, routing keys, and 

exchanges. 

AMQP allows message queuing, where messages can be stored by the broker and 

delivered at a later time, ensuring no loss of data. 

107



Drasko, B. & Rakic, K.: Analysis of Communication Protocols in Multi-Agent Sys… 

 

There are two delivery guarantees: 

• At least once. Guarantees that the message will be delivered, though duplicates are 

possible. 

• Exactly once. Ensures that each message is delivered exactly once without 

duplication. 

Advantages of using AMQP include: 

• Reliability. Provides robust mechanisms for message delivery guarantees. 

• Advanced features. Supports multiple message-routing patterns, including topic-

based and direct communication. 

• Security. AMQP includes built-in mechanisms for secure communication. 

Disadvantages of using AMQP are: 

• Heavyweight. AMQP is resource-intensive, making it unsuitable for lightweight or 

resource-constrained environments. 

• Complexity. Implementation can be more challenging due to its extensive feature 

set.  

 

4.3 Comparison of MQTT and AMQP 

 

The comparison between two previously discussed protocols is shown in Tab. 1. 

Feature MQTT AMQP 

Use case 
IoT, low-bandwidth 

environments 

Enterprise-grade 

applications 

Overhead Low High 

QoS 0, 1, 2 (Basic) 
At least once, exactly 

once 

Security External (TLS) Built-in mechanisms 

Message Persistence Not guaranteed 
Guaranteed through 

queuing 

Tab. 1. Comparison of MQTT and AMQP 

 

5. Request-Response Protocols 

 

 These protocols are essential for client-server interactions. Two prominent 

examples of such protocols are HTTP/REST and CoAP. Their features are explained 

below. 

 

5.1. Hypertext Transfer Protocol / Representational State Transfer 

Hypertext Transfer Protocol (HTTP) is the protocol for web-based 

communication, and Representational State Transfer (REST) is an architectural style 

that builds on it. RESTful services use HTTP methods like GET, POST, PUT, and 

DELETE for communication (Fielding, 2000). 

 

108



DAAAM INTERNATIONAL SCIENTIFIC BOOK 2024 pp. 103-116 Chapter 08 
 

 

REST is stateless, meaning every client request to the server is independent and 

contains all the necessary information for processing. REST is widely used for web 

APIs, transferring data typically in JSON or XML format. 

 

Advantages of using HTTP/REST include: 

• Scalability. Statelessness allows easy horizontal scaling. 

• Simplicity. It uses well-established HTTP, making it easy to implement. 

Disadvantages of using HTTP/REST are: 

• Overhead. HTTP’s headers can be large, making it inefficient for constrained 

environments. 

• Latency. High network overhead and statelessness can introduce delays, particularly 

for real-time applications. 

 

5.2 Constrained Application Protocol 

Constrained Application Protocol (CoAP) is designed for constrained devices and 

networks, such as those in IoT applications. It operates over UDP, ensuring lower 

overhead than HTTP (Shelby, 2014). CoAP uses a request-response model similar to 

HTTP but is optimized for low-power, constrained devices. It supports both unicast 

and multicast communication. 

 

Advantages of using CoAP include: 

• Efficiency. It uses less bandwidth and power, with smaller message sizes. 

• Interoperability. CoAP can be easily mapped to HTTP, facilitating integration with 

web-based systems. 

Disadvantages of using CoAP are: 

• Limited feature set. CoAP lacks the robustness and features of HTTP, such as built-

in security. 

• Reliability. Being UDP-based, it can suffer from packet loss, although 

retransmission mechanisms help mitigate this. 

 

5.3 Comparison of MQTT and AMQP 

 

The comparison between two previously discussed protocols is shown in Tab. 2. 

Feature HTTP/REST CoAP 

Protocol TCP-based UDP-based 

Overhead High Low 

Message Size Larger (JSON/XML) Smaller (binary) 

Reliability TCP ensures reliability 
UDP with 

retransmission 

Tab. 2. Comparison of HTTP/REST and CoAP 

  

109



Drasko, B. & Rakic, K.: Analysis of Communication Protocols in Multi-Agent Sys… 

 

6. Shared Memory Systems 

 

Shared Memory Systems in MAS allow agents to communicate by writing and 

reading data from a common memory. Tuple Spaces, originating from Linda, a 

coordination language developed by David Gelernter, provide a shared memory model 

that facilitates this interaction by using tuples ordered lists of elements. 

 

In Shared Memory Systems within Multi-Agent Systems (MAS), agents do not 

directly send messages to one another but instead they interact through a common 

memory space. Tuple Spaces, which serve as this shared memory, allow agents to 

write, read, and take tuples, which are ordered collections of data, facilitating indirect 

communication. This approach enables decoupled interactions, as agents do not need 

to be aware of each other’s existence or state, leading to a more flexible and scalable 

coordination mechanism. 

 

6.1 Tuple Spaces Concept 

In a Tuple space, agents perform three main actions (Gelernter, 1985): 

• Write (out). Insert a tuple into the space. 

• Read (rd). Retrieve a tuple without removing it. 

• Take (in). Retrieve and remove a tuple from the space. 

Advantages of using Tuple spaces in distributed systems include: 

• Decoupling. Tuple spaces decouple agents in both time and space, making 

interactions flexible and asynchronous. 

• Coordination. Useful for coordinating distributed agents without direct 

communication. 

Disadvantages of using Tuple spaces in distributed systems are: 

• Scalability. Managing large numbers of tuples can be inefficient. 

• Security risks. Shared access can expose the system to security vulnerabilities. 

 

6.2 Use in Distributed Systems 

Tuple spaces are highly suited for distributed computing where agents work 

asynchronously. The data-driven model allows agents to interact via the shared tuples, 

rather than through direct messages (Carriero & Gelernter, 1989). 

 

Advantages of using Tuple spaces in distributed systems: 

• Asynchronous interaction. No need for real-time communication between agents. 

• Fault tolerance. Data remains accessible until consumed. 

Disadvantages of using Tuple spaces in distributed systems: 

• Retrieval delays. Searching for specific tuples in large spaces can slow 

performance. 

• Consistency. Ensuring data consistency in dynamic environments is challenging. 

  

110



DAAAM INTERNATIONAL SCIENTIFIC BOOK 2024 pp. 103-116 Chapter 08 
 

 

7. Messaging Systems 

 

Messaging Systems facilitate communication between agents. Two prominent 

messaging systems are JADE and RabbitMQ, each serving different needs in agent 

communication and message distribution. 

 

7.1  Java Agent DEvelopment Framework 

Java Agent DEvelopment Framework (JADE) is a software framework that 

simplifies the development of multi-agent systems by providing a platform for agents 

to communicate using a message-based architecture. It complies with the 

specifications, ensuring interoperability between different agents (Bellifemine et al., 

2007). 

JADE agents communicate using the Agent Communication Language (ACL). 

Each message consists of a performative (the type of communicative act), sender, 

receiver, and content. 

Advantages of using JADE include: 

•  FIPA-compliance. Ensures standardization and interoperability across different 

MAS implementations. 

•  Extensibility. The modular design allows developers to easily add new 

functionalities or agent behaviours. 

•  Fault-tolerance. JADE agents can be distributed across multiple platforms, 

ensuring system resilience. 

Disadvantages of using JADE are: 

•  Overhead. JADE's compliance with FIPA standards and its complex messaging 

protocol can introduce overhead, especially for lightweight systems. 

•  Performance. JADE may not be as efficient in high-throughput environments 

where message delivery needs to be fast. 

 

7.2 RabbitMQ 

RabbitMQ is an open-source message broker that implements the Advanced 

Message Queuing Protocol (AMQP). It allows applications to communicate 

asynchronously via message queues, making it suitable for both agent-based systems 

and general distributed architectures (Alvaro & Videla, 2012) 

RabbitMQ facilitates communication through producers (which send messages) 

and consumers (which receive messages). Messages are sent to exchanges, which then 

route them to queues based on routing rules. RabbitMQ ensures reliable delivery of 

messages using acknowledgment mechanisms and supports message persistence for 

durability. 

 

Advantages of using RabbitMQ include: 

• High-throughput. RabbitMQ is designed for high-performance environments and 

supports a large number of concurrent messages. 

• Reliability. With features like message acknowledgment, delivery guarantees, and 

persistence, RabbitMQ ensures that messages are not lost. 

111



Drasko, B. & Rakic, K.: Analysis of Communication Protocols in Multi-Agent Sys… 

 

• Flexibility. It supports multiple messaging patterns such as direct, fanout, and topic-

based routing. 

Disadvantages of using RabbitMQ are: 

• Complexity. RabbitMQ can be more complex to configure, especially for systems 

that do not require its advanced features. 

• Overhead. The need for message acknowledgment and routing through exchanges 

can introduce latency in time-sensitive applications. 

 

7.3 Comparison of JADE and RabbitMQ 

 

The comparison between two previously discussed protocols is shown in Tab. 3. 

Feature JADE RabbitMQ 

Use case 
MAS development, 

agent communication 

General messaging, 

distributed systems 

Protocol FIPA-ACL AMQP 

Scalability Moderate High 

Reliability 
Fault-tolerance across 

agents 

Message 

acknowledgment, 

persistence 

Complexity High (FIPA compliance) 
Moderate (Advanced 

features) 

Tab. 3. Comparison of JADE and RabbitMQ 

 

8. Security Protocols 

 

Security protocols are essential to ensure secure communication, data integrity, 

and system trustworthiness. Two widely used protocols are Transport Layer Security 

and Blockchain-based security. 

 

8.1  Transport Layer Security 

Transport Layer Security (TLS) is a cryptographic protocol designed to provide 

secure communication over a network. It evolved from Secure Sockets Layer (SSL) 

and is widely used to secure web traffic, email, and other Internet communications 

(Rescorla, 2001). 

TLS uses a combination of symmetric and asymmetric encryption to ensure data 

confidentiality and integrity. A TLS session begins with a handshake process where 

the server and client exchange keys and authenticate each other using digital 

certificates. Afterward, all communication is encrypted using symmetric keys. 

TLS also provides message integrity through the use of hash functions, ensuring 

that data has not been altered during transmission. The protocol supports multiple 

encryption algorithms, allowing clients and servers to negotiate the strongest available 

cipher suite based on their capabilities. Additionally, TLS incorporates Perfect Forward 

Secrecy (PFS), ensuring that even if long-term keys are compromised, past 

communications remain secure by using ephemeral session keys for each connection. 

112



DAAAM INTERNATIONAL SCIENTIFIC BOOK 2024 pp. 103-116 Chapter 08 
 

 

Some key features of TLS are: 

• Confidentiality. TLS encrypts data to prevent unauthorized access. 

• Integrity. Message integrity is ensured using cryptographic hashing (e.g., HMAC). 

• Authentication. Uses X.509 certificates to authenticate the identities of 

communicating parties. 

Advantages of using TLS include: 

• Widely adopted. TLS is used extensively across the web, making it a standard for 

securing communications. 

• End-to-end security. TLS provides encryption from client to server, protecting data 

in transit. 

Disadvantages of using TLS are: 

• Resource-intensive. The TLS handshake and encryption mechanisms can introduce 

latency and resource overhead, especially in systems with constrained resources. 

• Certificate management. TLS requires a public key infrastructure (PKI) for 

certificate management, which can be complex to implement. 

 

8.2 Blockchain-Based Security 

Blockchain-based security leverages the decentralized and immutable nature of 

blockchain technology to secure communications, data storage, and transactions. A 

blockchain is a distributed ledger that records data in blocks, which are linked together 

in a chain using cryptographic hashes (Nakamoto, 2008) 

Blockchain relies on consensus mechanisms, such as Proof of Work (PoW) or 

Proof of Stake (PoS), to validate transactions and ensure the integrity of the ledger. 

Every participant in the network holds a copy of the blockchain, making it tamper-

resistant. 

Blockchain-based security uses the decentralized nature of blockchain technology 

to ensure that no single entity controls the system, enhancing resilience against attacks. 

Each block in the blockchain contains a cryptographic hash of the previous block, 

creating a secure chain that is nearly impossible to alter without the consensus of the 

entire network. Consensus mechanisms like Proof of Work (PoW) or Proof of Stake 

(PoS) validate transactions, ensuring that only legitimate actions are recorded in the 

ledger. By distributing the ledger across all participants, blockchain technology 

provides transparency and tamper-resistance, making it highly secure for various 

applications. 

 

Some key Features of Blochain-based security are: 

• Decentralization. Blockchain eliminates the need for a central authority, 

distributing control across the network. 

• Immutability. Once data is recorded in a block, it cannot be altered without 

consensus from the majority of the network. 

• Transparency. All transactions are visible to participants, ensuring accountability. 

Advantages of using Blochain-based security include: 

• Tamper-proof. The immutability of the blockchain ensures that data or transactions 

cannot be altered or forged. 

113



Drasko, B. & Rakic, K.: Analysis of Communication Protocols in Multi-Agent Sys… 

 

• Decentralized trust. Blockchain eliminates the need for trust in a single authority, 

distributing trust across the network. 

Disadvantages of using Blochain-based security are: 

• Scalability. Blockchain can suffer from scalability issues, with transaction speeds 

often slower than centralized systems. 

• Energy consumption. Consensus mechanisms like PoW are energy-intensive, 

making blockchain less sustainable for high-frequency transactions. 

 

8.3 Comparison of TLS and Blockchain-Based Security 

 

The comparison between two previously discussed protocols is shown in Tab. 4. 

 

Feature TLS 
Blockchain-Based 

Security 

Architecture 
Centralized, client-

server 

Decentralized, peer-to-

peer 

Confidentiality 

Encryption with 

symmetric and 

asymmetric keys 

Cryptographic hashing 

for data integrity 

Scalability 
High (with proper 

infrastructure) 

Moderate (depends on 

consensus) 

Key Use Case 
Web and Internet 

communication 

Securing distributed 

transactions and data 

Tab. 4. Comparison of TLS and Blockchain-Based Security 

 

9. Conclusion on Communication Protocols in MAS 

 

In MAS, communication protocols play a critical role in enabling effective 

interaction and coordination between agents. These protocols ensure that agents can 

exchange information reliably and efficiently, regardless of whether they are operating 

in centralized, decentralized, or hybrid environments. 

Request-response protocols like HTTP/REST and CoAP provide structured 

frameworks for direct communication between agents, with REST being well-suited 

for scalable web-based systems and CoAP designed for resource-constrained IoT 

environments. On the other hand, Publish-Subscribe (Pub-Sub) protocols such as 

MQTT and AMQP facilitate asynchronous communication, decoupling the sender and 

receiver, which enhances scalability in dynamic, large-scale systems. 

Moreover, security protocols like TLS and Blockchain-based systems ensure that 

communication between agents is secure and tamper-proof. TLS offers robust point-

to-point encryption, making it ideal for web-based MAS applications, while 

Blockchain provides a decentralized mechanism that ensures data integrity and trust in 

distributed environments. 

 

114



DAAAM INTERNATIONAL SCIENTIFIC BOOK 2024 pp. 103-116 Chapter 08 
 

 

The choice of communication protocol in MAS depends heavily on the specific 

use case, system requirements, and constraints such as scalability, resource availability, 

and security needs. As MAS evolve, the selection and optimization of these protocols 

will remain a key factor in achieving efficient and reliable multi-agent interactions. 

In addition to the specific characteristics of each communication protocol, the 

interoperability and compatibility of these protocols within heterogeneous MAS 

environments are also crucial considerations. Many MAS implementations involve 

agents with varying capabilities, operating on different platforms and networks. 

Therefore, selecting protocols that support seamless integration across diverse systems 

is essential for ensuring smooth agent communication. Furthermore, the ability to 

manage network latency, handle failures, and maintain consistent performance under 

varying loads is another important factor when evaluating communication protocols. 

By carefully balancing these factors, MAS can achieve robust, scalable, and efficient 

coordination across different use cases and environments. 

This paper enlisted most commonly used communication protocols used when 

designing MAS. It lists the main features of each, and discusses advantages and 

disadvantages by category. Finally we compared the protocols by category.  

 

9.1 Further research on MAS protocols 

Significant progress has been made in developing communication protocols for 

Multi-Agent Systems (MAS). However, there are several areas that require further 

exploration. One critical area is scalability. Current MAS communication protocols 

often face limitations in scalability with the significant increase in number of agents, 

leading to performance bottlenecks. Future research should focus on developing 

protocols that maintain efficiency and reliability in large-scale systems, especially in 

real-time and dynamic environments. 

Another important avenue for research is the integration of MAS with emerging 

technologies such as 5G, edge computing, and quantum communication. These 

technologies could enhance the speed and reliability of communication between 

agents, opening new possibilities for MAS applications in high-stakes environments 

such as autonomous vehicles, smart cities, and industrial automation. 

Security and privacy concerns are also prominent. As MAS becomes more 

prevalent in fields such as finance, healthcare, and national defense, ensuring secure 

communication among agents is crucial. Protocols must be able to withstand cyber-

attacks and ensure data privacy and integrity, especially in decentralized systems where 

agents may operate under different jurisdictions or regulations. 

Lastly, there is a need for further research into the adaptability and flexibility of 

MAS protocols. Given that MAS often operates in unpredictable and changing 

environments, protocols must evolve and adapt dynamically to new conditions without 

human intervention. (Popirlan & Stefanescu, 2011) 

Techniques such as machine learning and artificial intelligence could play a 

crucial role in creating more adaptive communication systems that can learn and 

optimize communication pathways based on real-time data. 

115



Drasko, B. & Rakic, K.: Analysis of Communication Protocols in Multi-Agent Sys… 

 

By addressing these challenges, future research can contribute to the development 

of more robust, efficient, and secure MAS communication protocols, ensuring their 

continued relevance and effectiveness across diverse domains. 

 

10. References 

 

Alvaro, A., & Videla, G. (2012). RabbitMQ in Action. Manning Publications. 

https://www.manning.com/books/rabbitmq-in-action 

Austin, J. L. (1962). How to Do Things with Words. Clarendon Press. 

Ayanoglu, E., Aytaş, Y and Nahum, D (2017). Mastering RabbitMQ by Packt 

Publishing 

Banks, A., & Gupta, R. (2014). MQTT Version 3.1.1. OASIS Standard. 

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf 

Bellifemine, F., Caire, G., & Greenwood, D. (2007). Developing Multi-Agent Systems 

with JADE .John Wiley & Sons. https://onlinelibrary.wiley.com 

/doi/book/10.1002/9780470058411 

Bordini, R. H., Dastani, M., Dix, J., & Seghrouchni, A. E. F. (2005). "Multi-Agent 

Programming: Languages, Platforms, and Applications." 

https://link.springer.com/book/10.1007/978-0-387-89299-3 

Carriero, N., & Gelernter, D. (1989). Linda in context. Communications of the ACM,  

https://dl.acm.org/doi/10.1145/63334.63337 

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software 

Architectures (Doctoral dissertation, University of California, Irvine). 

https://ics.uci.edu/~fielding/pubs/dissertation/top.htm 

Finin, T., Fritzson, R., McKay, D., & McEntire, R. (1994). KQML as an agent 

communication language. In Proceedings of the 3rd International Conference on 

Information and Knowledge Management, Gaithersburg, MD. DOI: 

10.1145/191246.191322 

FIPA (2002). "FIPA Communicative Act Library Specification." 

http://www.fipa.org/specs/fipa00037/SC00037J.html 

Gelernter, D. (1985). Generative communication in Linda. ACM Transactions on 

Programming Languages and Systems, https://dl.acm.org/doi/10.1145/2363.2433 

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin.org.  

Popirlan, C & Stefanescu, C (2011), A Multi-Agent solution for Contact Centre 

Improvement, DOI:10.2507/22nd.daaam.proceedings.576 

Rescorla, E. (2001). SSL and TLS: Designing and Building Secure Systems. Addison-

Wesley Professional.  ISBN-10: 0201615983  ISBN-13: 978-0201615982 

Rygallo, A.; Zloto , T. & Wolny , R.(2009). A Grammatical Model of the 

Multi-Agent system,  DAAAM INTERNATIONAL SCIENTIFIC BOOK 2009 

DOI:10.1007/11802372_5 

Shelby, Z., Hartke, K., & Bormann, C. (2014). The Constrained Application Protocol 

(CoAP). RFC 7252, IETF.  https://www.rfc-editor.org/info/rfc7252 

116


	08_dpn23186_e_1_Rakic_final

