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Abstract: This paper is an approach, from the optimization techniques, the point of 
view, provided by Ansys® for a superplastic deformation process of a commercial Al 
and Cu alloy called SUPRAL 100 (Aluminum 2004). In the present study, a finite 
element analysis, followed by application of some software optimization features were 
carried out to predict the deformation mode in various predetermined conditions and 
to optimize the forming process and enhance the product quality. In this regard, were 
established two input parameters(Sample_diameter and Displacement Y Component) 
and two output parameters(Equivalent Stress Maximum and Total Deformation 
Maximum) to study how the latter are influenced by the former and which the 
optimization design effort magnitude is. After the finite element analysis was carried 
out, all optimization methods available in Ansys®, Design Exploration module, were 
applied(Direct Optimization, Response Surface Optimization, and Six Sigma Analysis) 
and results were studied as a measure of parameters influence, using Ansys®, 
Parameters Correlation, module. This study should be regarded as consisting of two 
separate analyses, but that complement each other: a finite element analysis of 
superplastic deformation and an analysis of the opportunities to optimize the forming 
process, respectively. 
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1. Introduction  
 

The engineering system design is an interdisciplinary process that requires co-
operation between designers in different engineering fields. That is why engineering 
design is considered to be a complex process, and it must be approached very carefully. 
Engineering design requires hypotheses that need to be adopted for the development 
of models that can be subjected to analysis, verification, and experiments. The design 
begins with the analysis of several variants. For most applications, the entire design 
project can be subdivided into different subproblems that can then be independently 
addressed. Each subproblem can thus be presented as a design optimum to be 
mathematically solved, Diehl, M., Glineur, F., Jarlebring, E. & W. Michiels,  [1]. 

 
Numerical methods for solving optimization problems are also known as the 

mathematical programming framework. This framework provides a generally flexible 
formulation to solve engineering design issues, Belegundu, A. D. & Chandrupatla, T. 
R. [2].  

 
Sometimes optimization issues in engineering design may not have solutions, or 

they are totally inappropriate, with improper values. This is due, in general, to the 
existence of a mathematical conflict, since the problem may be incorrectly formulated. 
For example, it is possible that the formulated restrictions make it impossible to find a 
limited area of the test space, or that this space is undefined due to unlimited or 
mathematically indefinite restrictions. These accidents should be treated with care, 
without generalist approaches. 

 
Frequently, the simulation of the plastic deformation processes through the finite 

element method has proved useful and efficient. This method is extremely useful in 
exploration the results of several candidate processes. Wherefore, the method becomes, 
in fact, an original optimization algorithm, since the calculations are based on input 
parameters such as geometry, mesh analysis, strengths, constraints, material model, 
friction, non-linear behavior laws of the material. This approach, to the finite element 
method in the analysis of plastic deformation processes, has reached a certain degree 
of maturity. After the finite element analysis has developed results capable of 
predicting a feasible evolution of the studied process, it is possible to reverse the 
analysis problem. Thus, determining the input parameters, knowing the result of a finite 
element analysis, becomes an inverse problem, and is called the identification of 
parameters. This type of problem occurs in the study of the behavior of the material, 
so the problem is one of modeling and then a determination by numerical calculations, 
in most cases, of the material parameters that correspond to the final result already 
determined by solving the direct problem, Liu, W., Yang, Y. Y. & Z. W. Xing, [3]. 
Another type of the problem is that of the initial geometry of the specimens or tool 
shape design so that the desired shape of the finished piece is finally obtained, 
Kleinermann, J.-P., Ponthot, J.-P., [4] 
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1.1 Introduction to Optimization Study using Ansys®- DesignXplorer (Design 
Exploration module) 
 
 Design Exploration  is a particularly proficient approach used by the 
DesignXplorer feature of Ansys® for exploring, understanding and optimization of 
technological processes and manufacturing technologies, namely in their design. 
 

 
Fig. 1. The Project of Optimization General Scheme 
 
 The purpose of the Design Of  Experiments (DOE) procedure is to collect a 
representative set of data relating to a process, technology, or an engineering project, 
adequate, data to calculate a response surface, and then executing an optimization (for 
optimization of a Response Surface too). A set of Design Points (DP) will be 
calculated. The Response Surface accuracy will depend plenteously on the DOE 
scheme adopted, and in particular, the number of Design Points have been computed. 
 

 
Fig. 2. Outline of All Parameters(left); Table of Design Points (right) 
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 The Screening approach  is a direct, non-iterative method to sampling by a quasi-
random number generator based on the Hammersley algorithm. Note that Screening is 
used as a preliminary approach to sampling and evaluation. It should be considered as 
based on a random number generator; this consecutive method will use a new set of 
data for each approach. 
 
1.3 Optimization outline, (general theories; practice using Ansys) 
As optimization first step, DesignXplorer generates sampling: 
 
�5�:�: �á�; �; (1) 

 
subject to: 
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(2) 

 
 The symbols X and Y represent vectors with the integer values of the continuous 
parameters, respectively. DesignXplorer allows the user to define a constrained design 
space with linear or non-linear constraints.The constraint sampling is a heuristic 
method based on Shifted-Hammersley (Screening) and Mixed-Integer Sequential 
Quadratic Programming  (MISQP) sampling methods. Mixed-
Integer Sequential Quadratic Programming (MISQP)  is a mathematical optimization 
algorithm which solves Mixed-Integer Non-Linear Programming (MINLP) of the 
form, Exler, O. & Schittkowski, K.,  [6]: 
 
Minimize: 
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 The Multi-Objective Genetic Algorithm (MOGA) is a hybrid variant of the 
popular Non-dominated Sorted Genetic Algorithm-II (NSGA-II) based on controlled 
elitism concepts. It supports all types of input parameters, Wei, L. & Yuying, Y.,  [7].  
 The Nonlinear Programming by Quadratic Lagrangian (NLPQL ), is a 
mathematical optimization algorithm as developed by Schittkowski, K. [8]. This 
method is dedicated to solves constrained nonlinear programming problems of the 
form: 
 
�•�‹�•�B�:�T���= 
�C�Ý�:�T�; 
L �r�á�������F
L �s�å���I �Ø 
�T�Ð���4�á�ã 
�C�Ý�:�T�; 
R�r�á�������F
L �I �Ø
E�s�å ���I  
�T�ß
Q�T
Q�T�è 

(5) 

 
 This computational procedure consists in an optimization scheme which 
generates a set of quadratic programming subproblems which are solved successively. 
Initially, this was a FORTRAN subroutine code and was included by Ansys®, as 
optimization method option. 
 The Adaptive Single-Objective Optimization (ASO) is a mathematical 
optimization method that combines an Optimal Space-Filling (OSF) from Design of 
Experiments, a Kriging algorithm, Jakumeit; J., Herdy; M. & Nitsche, M., [9], and the 
MISQP optimization algorithm. It is a gradient algorithm based on a response surface 
which provides a refined, global, optimized result. 
 Adaptive Multiple-Objective is a mathematical optimization method that 
combines the Kriging response surface and the MOGA optimization algorithm. This 
allows the user to generate a new set of data, or to use an old one, but with a more 
pronounced dispersion finishing. Except where necessary, this method does not 
evaluate all design points. In general, this method is a similar approach as MOGA, but 
a using a Kriging response surface, part of the population is "simulated" by Kriging 
and Kriging predictor error reduces the number of search line in finding the first Pareto 
front solutions. Adaptive Multiple-Objective  optimization supports multiple 
objectives, multiple constraints, and is limited to continuous parameters and continuous 
parameters with Manufacturable Values. 
 In an engineering design process, it is very important to know what input 
parameters, and how many of these, are factors that influence in some way output 
parameters, and then decide which input parameters should be considered, Naceur, H., 
Guo, Y.Q. & Batoz, J.-L.,  [10]. This is a lengthy process before you can produce a 
decision. Experiments designed to help revolutionize this long process of continuous 
testing and search engine design errors, and transforming it from a costly process into 
a statistical, efficient and powerful computational algorithm or method. 
 A very simple experiment is the Screening design. In this design, it is proposed 
a permutation of the lower limit and the upper limit (i.e., two levels) of each input 
parameter (factor), to study its effect on the output parameter that is of interest. It is 
obvious that this design, even if it is very simple and popular, at the same time, among 
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industrial experiments, it only allows a linear effect if it exists between input 
parameters and output parameters. Thus, unfortunately, the effect of interaction 
between two or more parameters and output parameters can not be highlighted by this 
design. To compensate for this inadequacy of Screening design, it can be improved by 
including a center point of each input parameter within the experiments. This center 
point of each input parameter allows for a quadratic, minimum or maximum effect 
within the explored space, identifiable among input parameters and output parameters 
if they exist. This improvement is known as response surface design and allows a 
quadratic response model of responses estimated by optimization calculations. The 
quadratic mathematical response model can be calibrated using a full factorial design 
(all possible combinations of input parameters at each level) at three or more levels. 
 Moreover, this full factorial design requires more calculations and estimates than 
would normally be needed to outline a more accurate model of the parameters. As a 
deficiency of this design, it is to be said that the statistical procedure applied here in 
this design, with the aim of it being considered efficient, applies a technique using three 
or five levels, but not all possible combinations, known in the literature as Fractional 
factorial designs. Among the most popular fractional factorial designs for optimization 
models in the response surface design category are Central Composite Designs (CCD) 
and Box-Behnken Designs (BBM). 
 
1.4 Central Composite Designs(CCD) 
This feature is one of most used from that which is available for optimization model in 
the response surface category of design. This is an implicitly pre-set option, Rahman, 
M.M., [11]. 
 Details about superplasticity and superplastic forming of this practical 
experiments are given in the literature. To perform a superplastic forming controlled 
process, the sample plate is clamped between the two components of the forming die, 
Grebenisan G. & Muresan S., [12], on its perimeter and the assembly is heated in a 
horizontal oven, to high forming temperature (about half the melting temperature of 
the material, i.e. approximately 460[oC], for Supral 100, commercial named 
Aluminium alloy. After the temperature regime is reached a gas pressure will deform 
the specimen with a very low strain rate�Ý
L�6�t�ä�w�š�s�r�?�7���>�O�?�5�?�ä��The pressure inside to the 
die is automatically updated so as to keep a maximum value for the equivalent 
viscoplastic strain rate above nominated. The material is modeled with an Anand 
 Viscoplasticity law as described in Rahman, M.M., [11]. The strain distribution 
�R�Q���W�K�H�� �Z�R�U�N�S�L�H�F�H���V�H�F�W�L�R�Q�� �D�Q�G�� �U�H�V�X�O�W�D�Q�W���W�K�L�F�N�Q�H�V�V�� �R�I�� �W�K�H�� �V�S�H�F�L�P�H�Q�� �L�W�¶�V�� �S�R�V�V�L�E�O�H�� �W�R�� �E�H��
very variable from one area to another, leading to a nonhomogeneous thickness 
distribution in the final component. This will also induce higher stress zones.The 
authors Ponthot, J.-P., Kleinermann, J.-P., [13] proposed an approach to avoid these 
problems, and they proposed to use the following procedure: to determine the initial 
piece geometry that would lead, at the end of forming process to the prescribed uniform 
distribution of the thickness in the final workpiece transversal section. Furthermore, 
we chosen as input parameters the sample diameter and displacement of the sample 
inside the die, during the forming process, respectively, Kim, NamHo., Choi, K. K. & 
Chen, J. S., [14]. 
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Fig. 5. Correlation Matrix and Correlation Scatter 
 

 
Fig. 6. Correlation (Scatter) between Displacement and Equivalent Stress 
 Maximum(von Mises) 
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 The fig. 7 shows a distinguished influence of  Sample_Diameter input parameter 
on Equivalent Stress Maximum, which gives us the measure of involving of sample 
diameter on the shape of the finite workpiece, and the chance of crack appearance, the 
local necking evolution. 
 
 Whereas we expected that the influence of displacement magnitude changing 
would influence the thickness variations and the uniform distribution, nevertheless, this 
input parameter, i.e. 
 
 �'�L�V�S�O�D�F�H�P�H�Q�W���<���&�R�P�S�R�Q�H�Q�W�����G�R�Q�¶�W���K�D�Y�H���D�Q���R�X�W�V�W�D�Q�G�Lng implication on process 
output parameter, as Equivalent Stress  Maximum, fig. 7. Figure 7 shows a wide 
spread of value founded and computed at each evaluation, i.e. at each Finite Element 
Analysis. 
 
2. Response Surface Optimization 
 
 By performing GDO or Six Sigma Analysis(SSA), the optimization approach, 
after a Finite Element Analysis has been performed, is recommended after a Design of 
Experiments (DOE) study has been performed. 
 
In this way, Ansys® provides the operator with a response surface, fig. 8, a, b), and the 
response surface optimization samples, fig. 9 (image shows the Sample 6144 from 
10000 evaluations), built into the area of interest for the project, based on the design 
points chosen, Donglai, W., Zhenshan, C. & Jun, Ch.,  [16], Raz, K.; Cechura, M. & 
Chval, Z. [17]. 
 

  
Fig. 7. Response surface results 
 

328



DAAAM INTERNATIONAL SCIENTIFIC BOOK 2017 pp. 319-332 Chapter 24 
 

 

 
Fig. 8. Response Surface Optimization-Samples 
 
3. Six Sigma Analysis 
 

Six Sigma Analysis allows the user to determine, based on Gaussian dispersion, 
uncertainties in a pattern. An uncertainty can be a parameter or the value of this 
parameter at a given time. This type of analysis allows based on the Six Sigma Analysis 
quality criterion to determine with some precision if a design has a certain parameter 
within the quality limits of the normal Gaussian distribution. Generally, a parameter 
for controlling the model's quality specification is proposed as an output parameter, the 
values of which must fall within two limits: the lower limit or the upper limit of the 
quality criterion 

 

 
Fig. 9- The Gauss distribution, Ansys® Help Viewer [5] 
 
-LSL= lower specification limit 
-USL=upper specification limit 
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In industrial practice, it rarely happens that an output parameter follows a normal 
Gaussian distribution. By definition, Six Sigma Analysis represents the normal, 
symmetric Gauss distribution for which the distribution width is of an absolute value 
of 6 sigma (
G�u�ê), that is, the deviation from the mean value is �u�ê. 

For distributions other than Gauss, it is considered acceptable for those 
distributions for which the definition is valid: 3.4 units per million are out of the 
standard distribution. The SSA results are based on computing nine design points 
values for each input and output parameters, respectively, fig. 11, a, b), also the surface 
response built for input and output parameters, fig. 12: 

 

  
a) b) 

Fig. 10. Design of Experiments computed for Six Sigma Analysis 
 

 
Fig. 11. Response Surface built for Six Sigma Analysis 

 
4. Conclusion 

 
The engineering system design selects one or more variables that meet a set of 

objectives. A better design can be obtained if, using certain algorithms, a certain cost 
function can be reduced. The design is optimal when the lowest cost of all feasible 
models can be obtained for a particular model. Almost always, design choices are 
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limited due to resource constraints, such as material and work constraints, as well as 
physical and other restrictions. A feasible area within a design space is circumscribed 
by boundary boundaries. More importantly, both cost function and constraints can be 
expressed as mathematical functions involving design variables. The resulting 
mathematical optimization problem can then be resolved using different optimization 
methods. 

If we are going to introduce a typical optimization problem in engineering design, 
it should include the following steps: setting the problem and describing it; a 
preliminary data collection investigation as a pre-wording; identifying design 
variables; design criteria and constraints; the mathematical formulation of the 
optimization problem; finding the solution to the proposed problem. 

Engineering design optimization is an open-ended problem. The most important 
step in the optimization problem is the correct mathematical formulation of the 
problem, i.e., the mathematical optimization model. Once the problem has been 
formulated, a wide variety of analytical and computational methods are available to 
find a solution. Applying Goal Driven Optimization and Six Sigma Analysis to 
analysis, or design optimization study, is always a challenge in terms of saving time, 
especially where design complexity is high. This obviously implies a very laborious 
analysis by finite element method. The same can be said about a project in which the 
technological parameters are non-linear, or the material has a non-linear behavior. 
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