
DAAAM INTERNATIONAL SCIENTIFIC BOOK 2014 pp. 459-470 Chapter 37

PROBLEMS IN PROGRAMMING EDUCATION AND

MEANS OF THEIR IMPROVEMENT

KONECKI, M.

Abstract: Programming courses are very important and challenging part of future
computer experts’ education process. Abstract nature of these courses however
makes them rather difficult for most programming novices and these courses have
rather high reported failure rates. Throughout the years the search for methods that

would improve programming novices’ understanding of abstract programming
concepts has been conducted but it gave no generally accepted solution and the fact

remains that problems of programming novices are reoccurring in every new
generation. The reasons of this kind of state in programming education are analyzed
and discussed in this paper. The results of conducted research about the most
common problems of programming novices are also presented along with the
proposed steps for improving the success rate of programming courses.

Key words: programming, courses, education, novices, problems

Authors´ data: Dr. sc. Konecki, M[ario], University of Zagreb, Faculty of

Organization and Informatics, Pavlinska 2, 42000 Varazdin, Croatia,

mario.konecki@foi.hr

This Publication has to be referred as: Konecki, M[ario] (2014). Problems in

Programming Education and Means of Their Improvement, Chapter 37 in DAAAM

International Scientific Book 2014, pp.459-470, B. Katalinic (Ed.), Published by

DAAAM International, ISBN 978-3-901509-98-8, ISSN 1726-9687, Vienna, Austria

DOI:10.2507/daaam.scibook.2014.37

Konecki, M.: Problems in Programming Education and Means of Their Improvement

1. Introduction

Computer programs are present in almost all aspects of modern business and

other everyday life aspects. Development and maintenance of these programs is of

vital importance and this asks for rather large number of programming professionals

with profound knowledge about programming concepts. However, it has been noted

that education in this area comes with many reoccurring problems and difficulties

that programming novices experience during their studies. This fact leads to

relatively high failure rates which in years have created negative opinion and fear

about taking programming courses.

In order to solve these problems many attempts throughout the years have been

made. Nevertheless, these problems have persisted to this day. The fact remains that

programming novices have problems in learning even programming languages that

are designated as programming languages for beginners. Programming requires

certain way of thinking and understanding of different programming concepts and

structures which are hard for most programming novices to comprehend and apply in

their own programming tasks.

Some other aspects that influence this kind of state in programming education

are also important. There is an important question about the motivation of

programming novices to learn programming (Alaoutinen & Smolander, 2010) and

also the question about the appropriate learning style that programming novices

require in order to understand certain concepts. There is a need to analyze current

situation and methodology that is predominantly used to teach programming novices

programming in order to determine the best course of action that would address

reoccurring problems of programming novices.

Most common problems of programming novices along with existing efforts and

discussion about current methods used in teaching programming are presented in the

rest of this paper. The suggestions about the right course of action that is to be

undertaken in order to solve the problems of programming novices are also given and

discussed.

2. Learning to program

One thing that is common knowledge among all, from programming novices to

programming experts and teachers is that to learn how to program is difficult and

challenging task and this claim is supported by many authors (Baldwin & Kuljis,

2001; Bergin & Reilly, 2005; Gomes & Mendes, 2007; Hanks et al., 2004; Jenkins,

2002; Peng, 2010; Robins et al., 2003). General opinion is that failure rates in

introductory programming courses are high as well as the dropout rates after

introductory programming courses (Nikula et al., 2011; Yadin, 2011) although some

authors report different results depending upon the size of course group and other

factors (Bennedsen & Caspersen, 2007).

Many attempts through history of programming languages have been made in

order to develop a language which would be suitable with its syntax to beginners in

the world of computer code. Such languages were Smalltalk, Pascal, Basic,

DAAAM INTERNATIONAL SCIENTIFIC BOOK 2014 pp. 459-470 Chapter 37

HyperTalk, Logo and many others (Smith et al., 2000). Nevertheless, all that history

has shown is that none of these languages was suitable enough for programming

novices (Smith et al., 2000) although some research shows that the selection of

programming notation facilitates different programming concepts (Wiedenbeck,

1999; Wiedenbeck et al., 1999). Taking into consideration that it is quite challenging

to learn human spoken language fluently and that it takes years in order to do that

properly, it can very well be argued that learning programming language which is not

intuitive and does not address everyday situations is much more difficult.

Many authors agree that the programming language itself, its syntax combined

with logic and concepts that are prerequisite to development of real programs is the

main problem itself (Smith et al., 2000). Some authors go as far as to conclude that

no programming language is suitable and cannot be suitable for novices (Smith et al.,

2000).

3. Problems of programming novices

One of the biggest problems for programming novices is that there is a huge gap

between the intuitive way in which they think and the way of thinking that is suitable

for computers. Human mind is far more advanced than any computer. It operates in

such way that it is able to process a huge number of connections and associations in

order to do or understand something. Computers can’t do that. They need a clear

path, clear boundaries and coverage of all possible scenarios. Don Norman stated that

the gap between programming novice’s way of thinking and a way that is required by

computer in order for it to be able to process some instruction is as wide as Grand

Canyon (Norman & Draper, 1986). He also stated that in order to remove this gap

either the user has to be moved closer to the system or system must be moved closer

to the user (Norman & Draper, 1986).

Most efforts in education process are aimed at bringing the user closer to the

system by teaching him the complex programming concepts and syntax. Since this

approach has already been recognized as difficult for programming novices (Gomes

& Mendes, 2007; Smith & Webb, 2000) it is only logical to try to develop methods

that would allow the system to be moved closer to the user and that would enable the

user to understand it in a way that is more intuitive and natural for him. All this also

supports the conclusion that the main problem is not even the programming language

syntax, but rather the concepts and structures and a whole new way of thinking that is

required. So, solving the problem of teaching the novices to understand this new way

of thinking would consequently enable them to use programming language syntax in

order to implement solutions that are developed and designed using this new way of

thinking.

This fact is also supported by some authors that claim that there are certain bugs

(Pea, 1986) in understanding of computer programming that are characteristic to all

programming novices of all ages. These bugs are reoccurring and they are more

related to the way in which a computer has to be instructed in order to do something

than to design of programming languages. Programming novices all have some form

of intuitive understanding of programming concepts which are based on their age,

Konecki, M.: Problems in Programming Education and Means of Their Improvement

previous knowledge and experience (Pea & Kurland, 1983), but this intuitive way of

reasoning seems to be the main cause of most errors. Human way of thinking is

simply different from the one that computer needs in order to understand and perform

some tasks.

The main ability that computers lack is the ability of analogy, association and

adaption. While humans possess these characteristics, computers don’t and they have

to be instructed mechanically with flawless precision and rules that cover all cases

that computer is expected to deal with. Basically, it can be simply said that humans

are intelligent and computers are not and this is the main difference that causes

collision between intuitive way of reasoning that programming novices are using and

the way of thinking required in order to write proper computer programs. There are

three classes of common bugs in understanding of programming concepts among

novices that have been identified (Pea, 1986):

 Parallelism bug.

 Intentionality bug.

 Egocentrism bug.

Parallelism bug denotes the misguided understanding that computer can be

aware of several programming lines at the same time. For example that computer can

backtrack and execute some particular condition after its terms have been met

regardless of its inactivity as a programming line that has been passed and finished.

Intentionality bug means that programming novices often presume what a program

will do based upon only a part of its code. They frequently see something that

triggers some conclusion about what the program will do and they think of this

conclusion as a fact so they don’t interpret the rest of the code objectively but rather

in the light of their formed conclusion. Egocentrism bug means that programming

novices often don’t give computer enough programming instructions because they

presume that computer will somehow figure out what they want regardless of the

code that they have written. In this state of mind novices frequently omit various

important conditions or loops.

4. Motivation and methodology

Another important question regarding learning programming is the question of

proper motivation of programming novices (Alaoutinen & Smolander, 2010) and

proper methodology since it can be seen that less and less students are interested in

studying computer science (Bennedsen & Caspersen, 2007) and there is also a fact

that many students do not possess sufficient and expected level of programming

knowledge after passing programming courses (Ford & Venema, 2010; Lister et al.,

2004; McCracken et al., 2001). Most of teachers are still highly traditional and they

don’t use new technologies or new methods of teaching (Hu, 2004).

Research however shows that students would rather have somewhat different

way of learning programming, such as learning by example (Tan et al., 2009).

Programming is a skill (Jenkins, 2002) and every skill requires many hours of hard

work and practice. It is imperative that students do their assignments by themselves

DAAAM INTERNATIONAL SCIENTIFIC BOOK 2014 pp. 459-470 Chapter 37

in order to achieve sufficient level of programming skill. Students obviously know

this intuitively taking into consideration their attitude in which they denote practice

as a preferred way of learning (Tan et al., 2009) but knowing the right way is not

always enough. There are other aspects and methods that need further research in

order to develop a methodology that would address all issues that programming

novices encounter.

Some authors have conducted research that investigates possible set of factors

and predictors of students’ success in programming courses (Fincher et al., 2006).

The same predictors could be also used in a way that would help to determine the

best learning approach for every student since every student has some preferred way

of learning (Jenkins, 2002), although it is rather hard to make programming courses

as individual as it would be needed in this kind of approach for obvious reasons

which include lack of time and lecturers in today’s educational systems.

Taking this into consideration it can be concluded that some form of

constructivism should be used when designing programming courses. Constructivism

takes the learner on an active path where he is deeply involved in the learning process

and he also builds new knowledge on top of his existing knowledge (Ben-Ari, 1998).

Obviously new methods that would promote this kind of learning are needed in

programming courses. A research conducted among students has shown that time

consumption and motivation are the most important factors in successful finishing of

programming courses (Kinnunen & Malmi, 2006) so it can be concluded that aside

one’s abilities motivation is the most important factor that needs to be properly

addressed.

5. Main problems in programming courses and possible courses of action

In order to determine the main problems that programming novices report and to

conclude about accepts of programming courses that are most difficult to
comprehend, as well as to conclude about the reasons why they occur an appropriate
research has been conducted. The research has been conducted on 190 information
science students at the end of their programming course lectures in order to be able to
test all aspects of interest that are part of most programming courses curricula.

The students were given the questionnaire in which they had to denote which
aspects of programming they recognize as most difficult for them and questionnaire
in which they had to denote their experience regarding understanding of
programming problems and tasks as well as regarding designing algorithms and
remembering programming language syntax.

At the moment of taking the questionnaire students have already solved 10
programming tasks with all aspects that were included in the questionnaire. The
results of conducted research are given in Tab. 1 and Tab. 2.

Programming topic Number of respondents

Linked lists 78

Sorting 66

Working with files 64

Konecki, M.: Problems in Programming Education and Means of Their Improvement

Data structures 63

Arrays 61

Searching Algorithms 55

Pointers 54

Namespace 52

Do..While loop 48

Functions 47

For loop 38

While loop 34

If…else statement 31

Switch statement 27

Constants 19

Variables 11

Basic concepts of object-oriented

programming
10

If statement 8

Tab. 1. Problems reported by programming novices

Questionnaire item Mean Std. dev.

I have no difficulties in understanding

of programming problems that are

presented to me

1.430 0.384

When solving programming task I

have difficulties in understanding the

task itself

4.208 0.527

I have difficulties in drawing diagram

or writing pseudocode of given

programming task’s solution

4.412 0.531

I have more problems in visualizing

and designing conceptual solution in

pseudocode than in understanding and

remembering programming language

syntax

3.951 0.481

Designing of algorithmic solutions is

difficult and not intuitive to me
4.347 0.392

The main problem I experience is

remembering programming language

syntax

2.155 0.349

The main problems I experience refer

to understanding and visualizing

programming tasks and designing their

algorithmic solutions

4.034 0.491

Tab. 2. Reported experience with designing algorithms and remembering

programming syntax

DAAAM INTERNATIONAL SCIENTIFIC BOOK 2014 pp. 459-470 Chapter 37

The results presented in Tab. 1 are consistent with the analysis of students’

developed computer programs throughout the duration of the course. Pointers seem to

be the point in the curriculum where the students start to get more serious problems.

The first half of the curriculum seems to be less difficult because of less abstract

concepts, but as things move along and a more abstract and complex concepts are

introduced, students start to have more serious problems while trying to understand

given examples. The results presented in Tab. 2 show that although students don’t

find programming languages syntax to be easy, they have more problems in

understanding of given problems and in designing conceptual solutions and

algorithms in some form of pseudocode.

When considering these results and existing research it can be concluded that in

order to make programming more suitable for programming novices the right course

of action would be to alter existing methodology and curriculum structure in order to

make programming more suitable for average student’s learning style and desired

pace. Another point of direction would also be to increase the motivation of students

by elaborating the importance of programming for their professional career.

Algorithmic way of thinking and understanding of pseudocode solutions design is

reported as very challenging and vital problem for students and this fact asks for a

change in learning and teaching strategy which is also reported as one of the main

factors of success in programming courses (Hawi, 2010). It can be concluded that in

order to try to solve the problem of programming novices several steps could be

incorporated into programming education. The proposed steps are:

 Introduce additional programming course prior to introductory programming

course that would promote algorithmic way of thinking.

 Increase motivation of students for learning programming.

 Explain to students that programming is a skill, not merely knowledge.

 Introduce elements of constructivism into teaching process.

 Introduce learning by example.

 Introduce animation and other visualization techniques combined with

interaction.

 Introduce interactive visual simulations.

 Include support for multiple learning styles.

Because of an established gap between intuitive way of thinking and an

algorithmic thinking required to develop proper computer programs it would be

beneficial to introduce another programming course that would deal with this

difference and enable students to train themselves in this new way of reasoning. This

course could simply be called “Algorithmic thinking” or “Algorithmic construction”

and it would stay away from complex syntax or programming concepts that students

have most problems with. Instead, it would train students to understand the process of

decomposition of various problems and how to translate those problems’ parts into

composition of various algorithms’ parts that would do what algorithms are supposed

to do, cover all angles and cases and instruct the computer to do all necessary steps to

solve a problem.

Konecki, M.: Problems in Programming Education and Means of Their Improvement

To promote this way of thinking means to bridge the gap most students have

regarding constructing algorithms and writing various programming code. Also, this

kind of course would train students practically only in a subset of most today’s

programming courses curricula. Only variables, selections, loops and arrays would be

absolutely necessary with addition of maybe a few other concepts. In this way the

students would be able to train themselves in decomposition of problems and

construction of algorithms focused on understanding of their parts and meaning while

being free of trying to grasp complex programming concepts and syntax that require a

lot of their time which in the end results with them not comprehending the core skills

of algorithmic thinking.

By introduction of more activities and gradual advancement in collecting points

as well as by various formal and informal confirmations, the motivation of students

for learning programming could be increased. The same effect on students’

motivation could be achieved by introduction of all other proposed steps.

It is important to explain to students that programming is a skill, not only

knowledge and like every other skill, it requires many hours of practice. It is

therefore of great importance for students to do all their exercises themselves and to

do as many exercises they are able to do in order to develop their programming skill.

It is also important to notice that any particular skill including programming is

developed during time so the students need to practice over a longer period of time

rather than doing a large amount of exercises rapidly.

By introducing elements of constructivism and by turning the teacher into

facilitator that helps students to figure programming concepts by themselves the

students will have a chance to gain more profound and durable knowledge. This kind

of knowledge will also be promoted by using various analogies when describing

programming concepts that will help students to build new knowledge upon already

existing and familiar concepts.

Since programming is a skill, learning by example is logical way of teaching

that enables students to develop their skills during the lectures and connect those

skills and examples with theoretical concepts while they learn on their own.

Animations and other visualization techniques are indicated as beneficial for

students (Sorva et al., 2013) and they can help students to better understand abstract

programming concepts and structures through increase of students’ motivation to

learn since students are not frustrated or scared because they cannot imagine or

understand certain aspect of programming. Research also shows that best results are

achieved by not merely passive animation of programming concepts but with

inclusion of students in visualization process through some form of interaction (Pears

et al., 2007).

Another step that can be made is to include visual simulators of existing objects

that students would be able to program just as real objects, in order to make learning

more interesting and to increase students' motivation to learn (Dolinay et al., 2010,

2011). Visual simulations include students into learning process, making them active

and more focused. In this way students are able to understand programming concepts

in a more profound way since they have a means to investigate and simulate behavior

of various programming elements. In this way the motivation of students is also

DAAAM INTERNATIONAL SCIENTIFIC BOOK 2014 pp. 459-470 Chapter 37

increased since they are not only passive listeners but active participants in the

learning process.

Every student has a different and specific preferred way of learning. By

introducing a greater variety of presentation styles different learning styles would be

supported which would make learning easier for all students and which would

decrease fear of programming along with increase of motivation because of more

natural way of learning for every particular student.

6. Conclusion

Programming professionals are vital part of modern business world and

education of programming novices is of great importance. Programming courses are

an integral part of all computer and information science studies. However, rather high

failure rates and persistent problems of programming novices to comprehend

programming concepts and structures are reported which leads to conclusion that to

learn how to program is a challenging task that asks for a lot of effort from students

and from teachers. Abstract nature of programming concepts is something that

students are not used to deal with and it results in students not being able to have a

clear picture of these concepts. Student often tend to stop following lectures because

they lose track in some point which as a result decreases their motivation and

increases their fear of dealing with programming.

Many attempts to develop a programming language that would be suitable for

programming novices have been made throughout the years but none of them gave

any generally acceptable results which leads to conclusion that a programming

languages themselves and an algorithmic way of thinking that is required in order to

write programming code are the problem itself. There is a huge difference between

the intuitive way in which programming novices are reasoning and the way of

thinking that is required by computers in order to understand computer code and

perform task accurately.

The question of motivation and appropriate learning style is another aspect that

needs to be considered and programming courses should incorporate different

elements from different learning styles in order to be suitable for all programming

novices. This would also increase their motivation to learn programming. Various

visualization techniques, interactive simulations, learning by example and other

methods would also be beneficial for programming novices and they would enable

them to understand complex programming concepts in an easier way. This approach

would also reduce frustration and increase the motivation of programming novices.

Making clear that programming is a skill and constant practice is another key of

success but maybe the most important aspect that needs to be incorporated into

teaching methodology is addressing the gap between intuitive and everyday thinking

and algorithmic approach which calls for additional changes in the curriculum.

Results of conducted research show that students have the biggest problems in

understanding complex programming concepts that are abstract in nature and which

are not intuitively clear. Research results also show that students have difficulties in

understanding of programming tasks and in designing of appropriate algorithms for

Konecki, M.: Problems in Programming Education and Means of Their Improvement

their solutions. By adding a new course that would include only moderately abstract

concepts and structures programming novices would be able to focus on adapting to

algorithmic way of reasoning rather than spending too much of their time on trying to

grasp the complex syntax and concepts of programming. Development of such course

and curriculum that would promote algorithmic way of thinking as well as testing of

its effectiveness and efficiency will be a part of future research.

7. References

Alaoutinen, S. & Smolander, K. (2010). Student self-assessment in a programming
course using bloom's revised taxonomy, Proceedings of the 15th Annual Conference
on Innovation and Technology in Computer Science Education, Laxer, C. (Ed.),
pp. 155-159, ISBN 978-1-60558-820-9, Bilkent, Ankara, Turkey, June 26th -
30th, ACM, New York, NY, USA
Baldwin, L. P. & Kuljis, J. (2001). Learning programming using program
visualization techniques. Proceedings of the 34th Annual Hawaii International
Conference on System Sciences, Sprague, R. H., Jr. (Ed.), pp. 1051-1058, ISBN 0-
7695-0981-9, Maui, Hawaii, USA, January 3rd - 6th, IEEE, Washington, DC, USA
Ben-Ari, M. (1998). Constructivism in computer science education. ACM SIGCSE
Bulletin, Vol. 30, No. 1, March 1998, pp. 257-261, ISSN 0-89791-994-7
Bennedsen, J. & Caspersen, M. E. (2007). Failure rates in introductory programming.
ACM SIGCSE Bulletin, Vol. 39, No. 2, June 2007, pp. 32-36, ISSN 0097-8418
Bergin, S. & Reilly, R. (2005). The influence of motivation and comfort-level on
learning to program. Proceedings of the 17th Annual Workshop on the Psychology of
Programming Interest Group, Douce, C. (Ed.), pp. 293-304, University of Sussex,
Brighton, UK, June 28th - July 1st, Psychology of Programming Interest
Group, UK
Dolinay, J.; Dostalek, P. & Vasek, V. (2010). Simple operating system RTMON for
HC08 microcontrollers. Annals of DAAAM for 2010 & Proceedings of the 21st
International DAAAM Symposium, Katalinic, B. (Ed.), pp. 0515-0516, ISSN 1726-
9679, ISBN 978-3-901509-73-5, Zadar, Croatia, October 20th - 23rd, DAAAM
International, Vienna, Austria, EU
Dolinay, J.; Dostalek, P. & Vasek, V. (2011). Graphical user interface simulators for
lessons of real-time programming. Annals of DAAAM for 2011 & Proceedings of
the 22nd International DAAAM Symposium, Katalinic, B. (Ed.), Vol. 22, No. 1,
pp. 395-396, ISSN 1726-9679, ISBN 978-3-901509-83-4, Vienna, Austria,
November 23rd - 26th, DAAAM International, Vienna, Austria, EU
Fincher, S.; Robins, A.; Baker, B.; Box, I.; Cutts, Q.; de Raadt, M.; Haden, P.;
Hamer, J.; Hamilton, M.; Lister, R.; Petre, M.; Sutton, K.; Tolhurst, D. & Tutty, J.
(2006). Predictors of success in a first programming course. Proceedings of the 8th
Australasian Conference on Computing Education, Tolhurst, D. & Mann, S.
(Eds.), Vol. 52, pp. 189-196, ISBN 1-920682-34-1, Hobart, Australia, January
16th - 19th, ACS, Darlinghurst, Australia
Ford, M. & Venema, S. (2010). Assessing the success of an introductory
programming course. Journal of Information Technology Education: Research, Vol.
9, No. 1, January 2010, pp. 133-145, ISSN 1539-3585

DAAAM INTERNATIONAL SCIENTIFIC BOOK 2014 pp. 459-470 Chapter 37

Gomes, A. & Mendes, A. J. (2007). An environment to improve programming

education. Proceedings of the 2007 International Conference on Computer Systems

and Technologies, Rachev, B.; Smrikarov, A. & Dimov, D. (Eds.), Art. No. 88, pp.

1-6, ISBN 978-954-9641-50-9, Rousse, Bulgaria, June 14th - 15th, ACM, New

York, USA

Hanks, B.; McDowell, C.; Draper, D. & Krnjajic, M. (2004). Program quality with

pair programming in CS1. Proceedings of the 9th Annual SIGCSE Conference on

Innovation and Technology in Computer Science Education, Boyle, R. (Ed.), pp.

176-180, ISBN 1-58113-836-9, Leeds, United Kingdom, June 28th - 30th, ACM

New York, NY, USA

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate

students in an introductory-level computer programming course. Computers &

Education, Vol. 54, No. 4, May 2010, pp. 1127-1136, ISSN 0360-1315

Hu, M. (2004). Teaching novices programming with core language and dynamic

visualization. Proceedings of the 17th NACCQ, Mann, S. & Clear, T. (Eds.), pp.

94-103, ISBN 0-476-00726-7, Christchurch, New Zealand, July 6th - 9th, NACCQ,

Hillcrest, Hamiliton, New Zealand

Jenkins, T. (2002). On the difficulty of learning to program. Proceedings of the 3rd

Annual Conference of the LTSN Centre for Information and Computer Sciences,

pp. 53-58, ISBN 0-9541927-1-0, Loughborough, UK, August 27th - 29th, ICS

Subject Centre, Ulster, Ireland

Kinnunen, P. & Malmi, L. (2006). Why students drop out CS1 course? Proceedings

of the 2nd International Workshop on Computing Education Research, Anderson, R.;

Fincher, S. A. & Guzdial, M. (Eds.), pp. 97-108, ISBN 1-59593- 494-4,

University of Kent, Canterbury, UK, September 9th - 10th, ACM, New York,

NY, USA

Lister, R.; Adams, E. S.; Fitzgerald, S.; Fone, W.; Hamer, J.; Lindholm, M.;

McCartney, R.; Moström, J. E.; Sanders, K.; Seppälä, O.; Simon, B. & Thomas,

L. (2004). A multi-national study of reading and tracing skills in novice

programmers. ACM SIGCSE Bulletin, Vol. 36, No. 4, December 2004, pp. 119-

150, ISSN 0097-8418

McCracken, M.; Almstrum, V.; Diaz, D.; Guzdial, M.; Hagan, D.; Kolikant, Y. B.-

D.; Laxer, C.; Thomas, L.; Utting, I. & Wilusz, T. (2001). A multi-national, multi-

institutional study of assessment of programming skills of first-year CS students.

ACM SIGCSE Bulletin, Vol. 33, No. 4, December 2001, pp. 125-140, ISSN

0097-8418

Nikula, U.; Gotel, O. & Kasurinen, J. (2011). A motivation guided holistic

rehabilitation of the first programming course. ACM Transactions on Computing

Education (TOCE), Vol. 11, No. 4, November 2011, Art. No. 24, ISSN 1946-

6226

Norman, D. A. & Draper, S. W. (1986). User-Centered System Design: New

Perspectives on Human-Computer Interaction, Norman, D. A. & Draper, S. W.

(Eds.), Lawrence Erlbaum Associates, ISBN 0-89859-781-1, Hillsdale, New

Jersey

Konecki, M.: Problems in Programming Education and Means of Their Improvement

Pea, R. D. & Kurland, D. M. (1983). On the Cognitive Prerequisites of Learning

Computer Programming. Technical Report No. 18, June 1983, Bank Street College of

Education, Center for Children and Technology, New York, NY, USA
Pea, R. D. (1986). Language-independent conceptual "bugs" in novice programming.
Journal of Educational Computing Research, Vol. 2, No. 1, pp. 25-36,
Baywood Publishing Co., Inc., New York, NY, USA
Pears, A.; Seidman, S.; Malmi, L.; Mannila, L.; Adams, E.; Bennedsen, J.; Devlin, M.
& Paterson, J. (2007). A survey of literature on the teaching of introductory
programming. ACM SIGCSE Bulletin, Vol. 39, No. 4, December 2007, pp. 204-223,
ISSN 0097-8418
Peng, W. (2010). Practice and experience in the application of problem-based
learning in computer programming course. Proceedings of the International
Conference on Educational and Information Technology (ICEIT), Yuting, L. (Ed.),
Vol. 1, pp. 170-172, ISBN 978-1-4244-8033-3, Chongqing, China, September17th -
19th, IEEE, Piscataway, New York, NY, USA
Robins, A.; Rountree, J. & Rountree, N. (2003). Learning and Teaching
Programming: A Review and Discussion. Journal of Computer Science Education,
Vol. 13, No. 2, April 2003, pp. 137-172, ISSN 0899-3408
Smith, D. C.; Cypher, A. & Tesler, L. (2000). Programming by example: novice
programming comes of age. Communications of the ACM, Vol. 43, No. 3, March
2000, pp. 75-81, ISSN 0001-0782
Smith, P. A. & Webb, G. I. (2000). The efficacy of a low-level program visualization
tool for teaching programming concepts to novice C programmers. Journal of
Educational Computing Research, Vol. 22, No. 2, April 2000, pp. 187-216, ISSN
0735-6331

Sorva, J.; Karavirta, V. & Malmi, L. (2013). A review of generic program

visualization systems for introductory programming education. ACM Transactions on

Computing Education (TOCE), Vol. 13, No. 4, November 2013, Art. No. 15,

ISSN 1946-6226

Tan, P. H.; Ting, C. Y. & Ling, S. W. (2009). Learning difficulties in programming

courses: undergraduates' perspective and perception. Proceedings of the IEEE

International Conference on Computer Technology and Development, Jusoff, K.;

Othman M. & Xie Y. (Eds.), Vol. 1, pp. 42-46, ISBN 978-0-7695-3892-1, Kota

Kinabalu, Malaysia, November 13th - 15th, IEEE, Los Alamitos, California,USA.

Wiedenbeck, S. (1999). Novice comprehension of small programs written in the

procedural style. International Journal Human-Computer Studies, Vol. 51, No. 1,

July 1999, pp. 71–87, ISSN 1071-5819

Wiedenbeck, S.; Ramalingam, V.; Sarasamma, S. & Corritore, C. L. (1999). A

comparison of the comprehension of object-oriented and procedural programs by

novice programmers. Interacting With Computers, Vol. 11, No. 3, January 1999, pp.

255-282, ISSN 0953-5438

Yadin, A. (2011). Reducing the dropout rate in an introductory programming course.

ACM Inroads, Vol. 2, No. 4, December 2011, pp. 71-76, ISSN 2153-2184

