
36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

DOI: 10.2507/36th.daaam.proceedings.xxx

ENERGY-AWARE TASK SCHEDULING FOR SECURE

AUTONOMOUS VEHICLES: AN ANALYSIS OF CURRENT SYSTEM

DESIGNS

Suad Nesimi & Ervin Domazet

This Publication has to be referred as: Nesimi, S[uad]. & Domazet, E[rvin] (2025). Energy-Aware Task Scheduling

for Secure Autonomous Vehicles: An Analysis of Current System Designs, Proceedings of the 36th DAAAM

International Symposium, pp.xxxx-xxxx, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-

xx-x, ISSN 1726-9679, Vienna, Austria

DOI: 10.2507/36th.daaam.proceedings.xxx

Abstract

The adoption of heterogeneous architectures is driven by these demands, integrating CPUs, GPUs, and FPGAs to perform

diverse tasks such as perception, planning, and control on different hardware. Such platforms promise enhanced

performance and greater flexibility. This paper presents an overview of how contemporary industry and research systems

act in task and energy scheduling on heterogeneous AV platforms. We analyse the solutions at hand - including NVIDIA

DRIVE, Tesla's Full Self-Driving Computer, Mobileye EyeQ and AUTOSAR Adaptive to examine how they coordinate

processing units and enforce security isolation. At the same time, we investigate how they balance energy consumption

with real-time performance. The paper also highlights the trade-offs that these systems make and identifies key limitations

like scheduling of mixed criticalities being lacklustre, for lack of a better phrase, integrated into the current schemes, as

well as the absence of standardised thermal-aware mechanisms. Additionally, we must consider fragmented security

models. By synthesising these existing findings and observations, as well as our research conclusions, we point out future

research directions that aim to bring us closer to the system-level designed applications of energy-saving and secure

autonomous driving platforms.

Keywords: autonomous vehicle; heterogeneous components; secure systems; task allocation; thermal management.

1. Introduction

 Many computation-intensive tasks need to be conducted in modern AVs, including but not limited to multi-sensor

fusion, perception, real-time control and decision making. These are high-performance, low-latency responsibilities that

require task determinism to operate reliably and safely in dynamic environments. To satisfy these demanding conditions,

AV platforms are more equipped with heterogeneous computation engines including general-purpose CPUs: massively

parallel GPUs and hard- or software reconfigurable FPGAs [1], [3], [6]. The structure offers flexibility and processing

capability to perform simultaneous parallel computation with scalability and real-time performance. But there is a catch

to this flexibility. In such environments, the project of task scheduling, energy efficiency and system security is very

W
or

kin
g P

ap
er

 of
 36

th
DAA

AM
 S

ym
po

siu
m

36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

difficult. Energy-aware task scheduling has recently emerged as an important research thrust to reconcile the trade-off

between performance requirements of safety-critical applications plans with limited energy budgets and heat dissipation

constraints [2], [4], [5]. Such scheduling is charged with the obligations of consuming minimal energy while meeting

time deadlines for critical perception and control tasks under unknown workloads and hardware.

 Recent advances in the industry, such as NVIDIA DRIVE AGX Orin [8], Tesla’s Full Self-Driving (FSD) computer

[9], and Mobileye EyeQ5 processors are also examples of the trend of heterogeneous architectures in AV, which integrates

CPUs, GPUs and specialized accelerators for deep learning inference and sensor fusion [10]. These systems highlight the

benefits of tightly integrated heterogeneous processing for enabling real-time decision-making, but they also open new

challenges that come with sharing computing resources between workloads and ensuring isolation and security. Projects

such as AUTOSAR Adaptive Platform further highlight the need for secure task coordination and communication in

distributed automotive systems [11].

 Although extensive academic research and industrial adoption have been achieved, to the best of our knowledge, there

exists no comprehensive application which unifies the aspects (i.e., energy-efficiency; real-time scheduling; secure

operation) during AV-heterogeneous SoC design. Previous work has investigated methods such as task-structure-aware

scheduling [6] or GPU-based deep learning optimization [7], as well as dynamic system reconfiguration under energy

constraints [2]. Nevertheless, the practical and theoretical challenges in incorporating such approaches into end-to-end

autonomous driving stacks persist.

 The goal of this paper is to present a systematic literature review and critical study on the recent energy-aware task

scheduling approaches for autonomous vehicular systems running on heterogeneous computing architectures. Rather than

introduce new algorithms, we are concerned with observing how existing solutions, both from commercial trends and

academic concepts, tend to organize task allocation and processor coordination AND secure execution under constraints

of efficiency and real-time guarantee. The observations reported here are intended to recognize current challenges and

suggest directions for designing future energy-aware and secure heterogeneous computing platforms in autonomous

vehicle systems.

2. Background

As autonomous vehicles (AVs) have become smarter, the computational complexity of their software systems has

grown with each new advance. These systems must process an enormous quantity of data from cameras, Light Detection

and Ranging (LiDAR) sensors, radars and other sensors. For these systems to do this in a timely and safe manner, as well

as (more difficult yet) meeting strict real-time criteria, is crucial, especially for brake control, obstacle avoidance and

lane-keeping tasks. However, to meet these performance demands, today's AV platforms use a variety of processing

elements. These range widely from more typical CPUs like ARM-architecture microprocessors to GPUs and often FPGAs

(or ASICs). Each processor has its advantages:

1. High-performance sequential control tasks, logic-heavy processing and system orchestration are all handled well

by CPUs.

2. With their massive parallelism, GPUs provide a great fit for computationally intensive tasks such as deep

learning inference and point cloud processing.

3. FPGAs are commonly used in preprocessing sensor data or safety-critical modules. They offer low latency along

with highly customised data path control facilities.

This wide range of processing units not only brings flexibility and power but also raises fundamental questions of how

to match tasks effectively across them in ways which strive for a balance between categories such as performance, real-

time constraints, and security.

2.1 Task Scheduling in Autonomous Systems

Task scheduling is the process of determining which tasks should run on which processor at any given time. In the

context of AVs, computational tasks differ not only in complexity but also in their urgency and timing. Scheduling

decisions that are made poorly will mean that a task misses its deadline for whatever reason; this usually results in unsafe

behaviour. Worse still, if tasks are not isolated or lack security, then faults and cyber threats can spread from module to

module unimpeded.

Fig. 1 . Task scheduling in autonomous vehicles

W
or

kin
g P

ap
er

 of
 36

th
DAA

AM
 S

ym
po

siu
m

36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

The task-to-processor assignment used in this work is shown in Fig. 1, adapted from [14]. On the left, perception and

actuation workloads generate input flows that enter the central Task-to-Processor Mapping and Execution stage, where

they are scheduled onto heterogeneous units. The right-hand side shows the on-board multiprocessor SoC (CPUs/GPUs)

executing the tasks, while a cloud uplink is reserved for non-safety-critical analytics and storage. Arrows indicate data

flow and motivate why the placement fits the scheduling discussion.

2.2 Energy-Aware Scheduling

For AVs, especially those on electric vehicle (EV) platforms, energy efficiency is a crucial consideration. Each kind

of processing unit is a glutton when it comes to power, and poor scheduling gives rise to overheating, diminished battery

range or the requirement of under-clocking to respond to thermal pressure. Energy-aware scheduling involves organising

tasks onto processors to minimise their energy consumption without degrading performance or safety. Techniques include

dynamic workload balancing, power gating and keeping track of hot sections that are temperature sensitive.

2.3 Task Criticality and Mixed-Criticality Systems

The tasks in AV systems may be classified as critical or non-critical according to their influence on safety. Critical

tasks include real-time control, braking and sensor fusion modules. System breakdowns or accidents are the direct result

of malfunctions in these areas.

2.4 Non-critical Tasks

Non-critical tasks include user-interface processing, infotainment, and logging. If the system allows both types of

tasks to share a hardware platform, it is a mixed-critical system. Careful scheduling and isolation are necessary to avoid

situations where non-critical faults or delays interfere with the critical operations of safety.

2.5 Secure Execution and Isolation

Security is a major concern. Autonomous vehicles are subject to both physical and network-based threats. This

necessitates secure execution through task isolation. Hardware features such as memory protection, privilege separation

or trusted execution environments (e.g., ARM TrustZone, Intel SGX). Software containers and microkernels that enforce

task separation and restrict access to shared resources. Effective task scheduling should take these requirements into

account, ensuring that tasks from different security domains do not interfere with one another.

2.6 Purpose of this Paper

This paper is not going to introduce a new task scheduling algorithm or framework. Rather, it focuses on: Looking at

current industry and research practices for energy-aware task scheduling on AVs. How these systems succeed or fail in

managing criticality, coordinating processors to satisfy energy constraints and providing protection. Highlighting

limitations, gaps and new opportunities for more integrated, intelligent scheduling strategies in the future.

3. Review of Existing Systems

In this part, we will try to review a selection of prominent industry platforms and academic systems that support AV

functionality. Each is titled according to the target task scheduling, power efficiency, and secure execution on substrate

platforms, which contain security processing units within central processing units implicitly or explicitly as part of their

design.

3.1 NVIDIA DRIVE

NVIDIA’s DRIVE [8] platform is the most widely used autonomous driving solution for commercial and research

AVs. It is equipped with multi-core ARM CPUs, high-throughput GPUs and dedicated Deep Learning Accelerators

(DLAs). Task scheduling is usually performed by applications using NVIDIA's SDKs (e.g., DriveWorks, TensorRT), and

then developers are responsible for the detailed deployment of the workload CPU, GPU and DLA. While NVIDIA's

design does support high-performance inference and real-time sensor processing, its ability to schedule for energy leads

to less tightly organised scheduling behaviour. Developers may use Dynamic Voltage and Frequency Scaling (DVFS) or

thermal-aware power domains, but these are hardware features and cannot be considered software-level schedulers in any

meaningful sense of the term. Security is handled at the system level, with support for secure boot, root of trust, memory

W
or

kin
g P

ap
er

 of
 36

th
DAA

AM
 S

ym
po

siu
m

36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

partitioning and so on. Little integration between the scheduling logic and isolation means little attention is paid to

incorporating these principles into concrete mechanisms for practical enforcement of the security policy.

3.2 Tesla Full Self-Driving Computer

Tesla’s FSD [9] computer has a custom-built SoC architecture that consists of two redundant chips. Inside are CPU

clusters, GPU cores, and specialised Artificial Intelligence (AI) accelerators on each chip. The platform has been

developed to be highly redundant for the parallel execution of perception and planning pipelines on different chips.

Scheduling is an internal detail, but Tesla seems to do static partitioning and use the dedicated compute blocks for some

workloads. Energy management is probably implemented at the level of silicon, with dedicated logic for reducing power

consumption under idle or partial-load conditions. Security mechanisms such as fault detection and watchdogs are found,

but due to the closed-end nature of the system, it is hard to evaluate how dynamic or adaptable the task scheduling model

is, especially when different driving situations or processor loads are taken into consideration.

3.3 Mobileye EyeQ

Mobileye’s EyeQ [10] series is dedicated to vision processing and deployed in many Levels 2–3 AVs. Its design is

based not on GPGPUs but on highly optimised ASICs. This is very energy efficient, but less flexible. EyeQ systems are

deterministically assigned hardware-pipelined (statically) such that performance can be guaranteed. Although it provides

fine-grained control over when actions execute and how much energy they consume, it doesn’t provide a way to either

schedule actions dynamically during execution or to adapt to changes in the environment or the availability of resources.

The platform is tailored for use in the context of ISO 26262 ASIL-D requirements with high safety integrity levels, which

is less appropriate for full-stack autonomous systems making on-board decisions which require the reconfiguration of

tasks

3.4 AUTOSAR Adaptive Platform

AUTOSAR Adaptive [11] is a software platform designed for new-generation ECUs, which are used in ADAS &

AVs. It is capable of service-oriented communication, POSIX-compliant OS environments and deterministic application

execution. AUTOSAR Adaptive does not support energy-aware scheduling. On the contrary, power management is

commonly devoted to the ECU as OEM-dependent approaches. Also, task scheduling policies depend on the RTOS and

the middleware selected by the designer. From the security point of view, AUTOSAR Adaptive provides some degree of

support for role-based access control, secure communication and application separation. But these capabilities are not

coordinated well with scheduling logic, and coordination between energy, timing, and security becomes suboptimal.

3.5 ROS2-Based Research Platforms

ROS2 [12] is commonly employed both in academic and open-source AV projects. It facilitates the distributed,

modular design of AV functions, with nodes executing on various processing nodes. Real-time execution is also partially

supported in ROS2 using the OpenSplice DDS middleware, and with Real-Time Operating Systems (RTOS) on systems

such as RT Linux. There is no built-in support for energy-aware scheduling in ROS2. All energy optimisations must occur

from the OS up or at a hardware level. Likewise, task criticality and fault isolation must be imposed manually, e.g. using

containerization or external safety supervisors. Despite its flexibility, ROS2 is still constrained in system-level integration

of scheduling, energy and security, deciding between the two rather than being a prototyping platform rather than a

production-level AV solution.

4. Analysis and Observations

Based on these platforms, some trends and deficiencies can be identified, which indicate the status and immaturity of

autonomous vehicle integrated energy-aware secure scheduling to a large extent.

4.1 Lack of Dynamic Scheduling Intelligence

Most of the platforms are based on a static or semi-static task assignment model. Real-time dynamic scheduling that

considers the load on the network, available power, or the criticality of the task has not been well addressed. This may

result in over-utilisation (and thermal strain) or under-utilisation (and wasted performance).

4.2 Disjoint Energy and Security Management

W
or

kin
g P

ap
er

 of
 36

th
DAA

AM
 S

ym
po

siu
m

36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

A lack of consideration is given to energy and security as a joint issue. Although energy principles can exist (DVFS,

idle modes) and security features like secure boot can be supported, few systems integrate these during scheduling

decisions. There is no known system that automatically schedules tasks to achieve both power efficiency and an isolation

domain.

4.3 Minimal Support of Mixed-Criticality Systems

Even when these assumptions are not posed, most systems that are aware of mixed-criticality requirements (e.g.,

AUTOSAR) provide very limited actual runtime separation and priority management of such tasks. This is dangerous for

system stability and functional safety in case of high calculating load, or partial failure.

4.4 Limited Interoperability and Openness

Closed-source providers such as Tesla and Mobileye provide minimal visibility into how they make scheduling

decisions, so it is challenging to draw comparisons between solutions. At the same time, open platforms such as ROS2

are not yet mature and integrated enough for commercial deployment of AV (Table 1).

To facilitate a qualitative comparison of the five AV platforms in this paper, Table 1 summarises them. The table

compares each system according to 5 main characteristics: task scheduling mechanism, energy-awareness, security and

isolation functions, support for mixed-criticality workloads and openness to the research/development community. The

following table summarises the portability and integration maturity of these platforms.

For example, to schedule in the power and task domain of developer-level control on NVIDIA DRIVE; however, it

does not include something for criticality-based scheduling. Meanwhile, Mobileye’s EyeQ supports extremely efficient

computation, but is inflexible because of its fixed-function nature. This table aims to provide readers and reviewers with

an overall view of the strengths, weaknesses and limitations for each system immediately, facilitated by detailed

discussion presented in the previous section.

Platform Task

Scheduling

Approach

Energy-Aware

Support

Security &

Isolation

Mixed-

Criticality

Support

Openness/Availability

NVIDIA

DRIVE

Manual/

developer-

driven

Hardware-level

DVFS, power

domains

Secure boot,

memory

partitioning

Partial

(developer

managed)

Partial (SDK access)

Tesla FSD Likely static,

internal only

Custom chip

design, likely

hardware-

managed

Hardware

watchdogs,

dual

redundancy

Via chip

separation

Closed source

Mobileye EyeQ Static/hardware

pipeline

Extremely

efficient ASIC-

based design

Meets ASIL-D,

strict isolation

Limited Closed source

AUTOSAR

Adaptive

OS/middleware

dependent

Vendor-specific

implementations

Role-based

access, secure

comms

Theoretical

support

Open source

ROS2-based

Systems

OS-level &

node-based

(flexible)

None natively Optional via

SROS2,

containers

Developer-

defined only

Fully open source

Table 1. Comparison of task scheduling, energy-awareness, security, and system openness across representative

autonomous vehicle platforms.

5. Experimental Results

While the main topic of this work is a thorough overview of existing systems for energy-aware task scheduling in

secure AVs, we present a simple simulated example below to demonstrate the challenges when allocating tasks to a

target platform with a heterogeneous amount of processing capabilities. This is not intended as a performance

benchmark. The purpose is to demonstrate the concept of how scheduling impacts energy and execution time in real AV

systems.

W
or

kin
g P

ap
er

 of
 36

th
DAA

AM
 S

ym
po

siu
m

36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

To emulate a realistic workload in an autonomous driving context, we define three representative tasks:

• T1: Object Detection (compute-intensive, latency-tolerant)

• T2: Emergency Braking (time-critical, safety-sensitive)

• T3: Lane Keeping Control (low latency, real-time loop)

These tasks are mapped to three processor types commonly used in AV platforms:

• CPU (deterministic control, lower power)

• GPU (parallel high-throughput, high energy)

• FPGA (low latency, energy-efficient)

Simulation results show that Scenario B (Energy-aware mapping) saves 45% of the total execution time and 41% of

the energy consumption compared to Scenario A, which uses an energy-unaware allocation. Placing the safety-critical

Emergency Braking on the CPU improves both energy efficiency and the task determinism at runtime, while transferring

the Lane Keeping Control to the FPGA provides the low-latency processing. While this is a step toward increasing the

efficacy of both offline and online task scheduling policies based on complex real-world data, we posit this as an

encouraging average case that should be used to vet other scheduling policies for intelligent frameworks in simulation,

which, even in simulation, have the potential to provide large improvements in terms of both energy and response time

in real time AV systems. Although actual results may vary according to hardware and task models, the direction

demonstrated indicates the need for context-aware, dynamic scheduling schemes on heterogeneous AV platforms. This

is a demonstrative simulation, not based on actual hardware experiments. However, it does help to confirm the usefulness

of the design considerations presented in the earlier sections. We may also develop this simulation on a real-time

middleware platform (e.g., ROS2 with DDS), and model it on machines (e.g., NVIDIA Jetson, Drive AGX, AUTOSAR

Adaptive-based ECUs).

We provide a light runtime-supervision layer, which subscribes to raw and pre-processed sensor topics, and performs

inference with small neural models on the CPU side. The monitor emits raised events (anomalous, drifting and missing

frames) that the scheduler treats as soft signals for admission control and mode switching without rejecting components

responsible for controlling any safety-critical loops. To minimize overheads, inference is rate-limited and memory-

pinned and put in a separate domain. This architecture is motivated by previous results indicating that NN-based

monitoring of sensor signals can be performed with an acceptable latency and resource footprint for online applications

[13].

Task Scenario A Exec. Time

(ms)

Energy

(mJ)

Scenario B Exec. Time

(ms)

Energy

(mJ)

Object

Detection

CPU 40 35 GPU 18 60

Emergency

Braking

GPU 12 50 CPU 10 12

Lane

Keeping

Control

GPU 10 48 FPGA 6 7

Total 62 133 34 79

Table 2. Comparison of task execution time and energy consumption under naive vs. energy-aware task scheduling

strategies.

Table 2 illustrates the impact of assigning perception, safety-critical tasks, and control to the appropriate processing

units, such as CPU, GPU, and FPGA. The energy-aware scenario achieves significantly lower overall energy usage and

improved response times through criticality-aware task allocation and hardware.

6. Challenges and Limitations

The overview of today’s systems highlights the multiple challenges that the research community and industry face in

paving the way towards more dependable, secure, and energy-efficient autonomous vehicle platforms.

6.1 Unified Scheduling Strategies

W
or

kin
g P

ap
er

 of
 36

th
DAA

AM
 S

ym
po

siu
m

36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

There is an urgent demand for schedulers which take timing constraints, energy budget, processor utilisation and task

criticality into consideration. A unified approach will require running on multiple hardware domains (CPU, GPU, FPGA)

on the fly.

6.2 Cross-Layer Security and Scheduling Integration

In the future, security should be part of the task scheduler rather than a bolt-on. e.g., the verification of the operation's

origin, the assignment of rights to be executed, or the separation during execution of potentially unsafe or faulty code

parts.

6.3 Middleware-Level Support

Native middleware-level APIs for measurement of power, task profiling and dynamic load balancing should be

supported by AV stacks. It would have allowed application developers to write scheduling-friendly code without having

to understand much about the hardware.

6.4 Evaluation Frameworks and Benchmarks

In such systems, since users’ job experience makes their experiments more reproducible and results more reliable, we

must procure open benchmarking environments to perform comprehensive performance evaluation of scheduling and

energy management strategies under realistic workloads and fault conditions. They would facilitate academia-industry

collaboration on best practices benchmarking.

6.5 Implications / Consequences

Enforcing energy and security-aware scheduling can further enhance AV range and diminish thermal throttling by

smarter DVFS and load placement, better respect of deadlines for safety-critical loops through criticality-aware mapping,

reduce lifetime costs by lowering the impact of thermal stresses on components, as well as lower attack surface area by

enforcing isolation domains at scheduling time. Possible downsides: Complexity and potential overhead for the scheduler

of added data that needs to be limited and justified (ISO 26262). Power, thermal, and isolation telemetry may demand

more observability. Portability or certification issues involving various vendor APIs, Vendor lock-in if there are

proprietary power/thermal/security interfaces.

6.6 Limitations

We have built a qualitative review, relying on what is publicly available documentation for such platforms as Tesla or

Mobileye; this limits the ability to verify our claims through means such as telemetry or isolation mechanisms. Our table

shows a simulated system. Although the numbers are easily tested directly on real hardware, they omit memory

bandwidth, data-movement overheads, interference into interconnect contention latencies and sensing/actuation lag.

Changes in environmental temperature, such as heating up and cooling down processes that respond to changes in how

hard you keep both power transformer windings connected to one amplifier or another--these are not considered. Of

course, with individual thermal simulations, no actual temperatures or powers reached the physical object being modelled.

We also do not provide a single unifying cross-platform benchmark or support, so our work may only generalise to

heterogeneous SoCs with similar accelerator mixes from different vendors and power/thermal APIs. Future work in this

area must include hardware-in-the-loop experiments, standardised workloads, and physically measured

power/temperature fluctuation traces.

6.7 Interpretation of Results

The toy experiment in Table 2 suggests that mapping, which is conscious of criticality and energy-wise lowers both.

If you assign Emergency Braking to the CPU and Lane Keeping to the FPGA, the total time falls to (62 → 34 ms), and

energy also dips down along the curve (133 → 79 mJ). However, if you move heavy perception into the GPU, it keeps

the throughput unchanged. These developments align nicely with earlier findings that (i) heterogeneous offloading

enhances speed through acceleration paths lined up well with data structures [6], [7]; and (ii) energy saving comes when

safety-critical, tight-loop control goes on low-latency, low-power sources [2], [4]. One key point is that latency is

minimised for all critical tasks while levels off are reached in terms of energy/thermal. But because in these benchmarks

there is no bus contention or thermal effects penetrating standard workloads, readers might form their own judgment as

to the values, as a clue at least. And because isolation-aware placement of real-time control tasks on (CPU, FPGA), and

W
or

kin
g P

ap
er

 of
 36

th
DAA

AM
 S

ym
po

siu
m

36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

perception tasks on (GPU) is consistent with our thesis, this kind of tested hardware evaluations in Part II support our

arguments.

7. Conclusion

The ongoing development of autonomous vehicles is conditioned largely on the progress made at the system level –

beyond simply increasing numbers of sensors and increasing the complexity of the processing algorithms – and in the

areas of task scheduling, energy efficiency, and secure execution. We had accordingly offered a systematic analysis of

how state-of-the-art AVs deal with these factors in multi-processor settings. Although significant improvement of

hardware performance and functionality has been achieved, our investigation discovers a huge space in integrated

scheduling intelligence, energy-efficient task scheduling, and run-time security isolation. Existing systems generally

address them in an isolated manner; thus, the adaptability and robustness under various practical constraints are restricted.

Quantifying these gaps and surveying architectural trends, this paper establishes a foundation for future works that seek

to narrow the gap between platform potential and software intelligence. Collaboration between industry and academia

will be crucial in the pursuit of the subsequent generation of fast, smart autonomous systems that are also efficient, secure,

and reliable. Current approaches often concentrate on improving one area while overlooking others. This can make

vehicles inefficient or unsafe. The typical use of different architectures, such as CPUs, GPUs, and FPGAs, highlights the

need for unified planning tools that can address power consumption, response time, and safety requirements. Dealing

with these trade-offs through a combined, multi-layered design will be crucial for developing platforms that are both high-

performing and reliable in real-world situations.

8. References

[1] Zou, A.; Liu, Q.; Xu, H. & Wang, Y. (2021). A survey of real-time scheduling on accelerator-based heterogeneous

architectures for time-critical applications, Journal of Embedded Systems Research, 15(4), 233–250.

[2] Yi, S.; Kim, T. W.; Kim, J. C. & Dutt, N. (2020). Energy-efficient adaptive system reconfiguration for dynamic

deadlines in autonomous driving, IEEE Transactions on Intelligent Vehicles, 5(2), 112–122.

[3] Miao, Z.; Chen, L. & Zhang, P. (2021). Review of task scheduling methods for heterogeneous chips, Journal of

Computer Science & Technology, 36(7), 1258–1274.

[4] Li, R.; Feng, Y. & Hu, L. (2021). Energy-aware task scheduling on heterogeneous computing systems with time

constraint, ACM Transactions on Embedded Computing Systems, 20(5), Article 45.

[5] Perin, G.; Rosa, L. & De Oliveira, A. (2023). EASE: Energy-aware job scheduling for vehicular edge networks with

renewable energy resources, Frontiers in Computer Science, 7, 122–130.

[6] Zhang, X.; Li, C. & Wen, J. (2022). TSSA: Task-structure-aware scheduling of energy-constrained parallel

applications in distributed embedded systems, Journal of Systems Architecture, 133, 102790.

[7] Kaur, R.; Singh, M. & Gupta, P. (2022). A survey of advancements in scheduling techniques for efficient deep

learning computations on GPUs, Journal of Parallel and Distributed Computing, 165, 13–27.

[8] NVIDIA Corporation (2022). NVIDIA DRIVE AGX Orin Developer Kit: Product brief. Santa Clara, CA, USA.

[9] Greenhill, S. (2021). Inside Tesla’s Full Self-Driving computer, IEEE Spectrum, 58(10), 34–41.

[10] Mobileye Ltd. (2021). EyeQ5 system-on-chip for ADAS and AV applications: Technical overview. Jerusalem, Israel.

[11] AUTOSAR Consortium (2021). AUTOSAR Adaptive Platform overview, Release R21-11. Munich, Germany.

[12] Maruyama, Y.; Kato, S. & Azumi, T. (2016). Exploring the performance of ROS 2, in Proceedings of the 13th

International Conference on Embedded Software (EMSOFT ’16), ACM, New York, 1–10.

[13] Topalova, I. & Radoyska, P. (2023). A model of an intelligent automation system for monitoring of sensor signals

with a neural network implementation, Proceedings of the 34th DAAAM International Symposium, 0050–0055, B.

Katalinic (Ed.), DAAAM International, Vienna, Austria. DOI: 10.2507/34th.daaam.proceedings.007. ISBN: 978-3-

902734-41-9. ISSN: 1726-9679.

[14] Balasekaran, G.; Jayakumar, S.; Pérez de Prado, R. (2021). An Intelligent Task Scheduling Mechanism for

Autonomous Vehicles via Deep Learning. Energies, 14(6), 1788. ISSN 1996-1073. DOI: 10.3390/en14061788.

W
or

kin
g P

ap
er

 of
 36

th
DAA

AM
 S

ym
po

siu
m

