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Abstract 

 

The adoption of heterogeneous architectures is driven by these demands, integrating CPUs, GPUs, and FPGAs to perform 

diverse tasks such as perception, planning, and control on different hardware. Such platforms promise enhanced 

performance and greater flexibility. This paper presents an overview of how contemporary industry and research systems 

act in task and energy scheduling on heterogeneous AV platforms. We analyse the solutions at hand - including NVIDIA 

DRIVE, Tesla's Full Self-Driving Computer, Mobileye EyeQ and AUTOSAR Adaptive to examine how they coordinate 

processing units and enforce security isolation. At the same time, we investigate how they balance energy consumption 

with real-time performance. The paper also highlights the trade-offs that these systems make and identifies key limitations 

like scheduling of mixed criticalities being lacklustre, for lack of a better phrase, integrated into the current schemes, as 

well as the absence of standardised thermal-aware mechanisms. Additionally, we must consider fragmented security 

models. By synthesising these existing findings and observations, as well as our research conclusions, we point out future 

research directions that aim to bring us closer to the system-level designed applications of energy-saving and secure 

autonomous driving platforms. 

 

Keywords: autonomous vehicle; heterogeneous components; secure systems; task allocation; thermal management. 

 

 

1. Introduction  

 

 Many computation-intensive tasks need to be conducted in modern AVs, including but not limited to multi-sensor 

fusion, perception, real-time control and decision making. These are high-performance, low-latency responsibilities that 

require task determinism to operate reliably and safely in dynamic environments. To satisfy these demanding conditions, 

AV platforms are more equipped with heterogeneous computation engines including general-purpose CPUs: massively 

parallel GPUs and hard- or software reconfigurable FPGAs [1], [3], [6]. The structure offers flexibility and processing 

capability to perform simultaneous parallel computation with scalability and real-time performance. But there is a catch 

to this flexibility. In such environments, the project of task scheduling, energy efficiency and system security is very 
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difficult. Energy-aware task scheduling has recently emerged as an important research thrust to reconcile the trade-off 

between performance requirements of safety-critical applications plans with limited energy budgets and heat dissipation 

constraints [2], [4], [5]. Such scheduling is charged with the obligations of consuming minimal energy while meeting 

time deadlines for critical perception and control tasks under unknown workloads and hardware. 

 Recent advances in the industry, such as NVIDIA DRIVE AGX Orin [8], Tesla’s Full Self-Driving (FSD) computer 

[9], and Mobileye EyeQ5 processors are also examples of the trend of heterogeneous architectures in AV, which integrates 

CPUs, GPUs and specialized accelerators for deep learning inference and sensor fusion [10]. These systems highlight the 

benefits of tightly integrated heterogeneous processing for enabling real-time decision-making, but they also open new 

challenges that come with sharing computing resources between workloads and ensuring isolation and security. Projects 

such as AUTOSAR Adaptive Platform further highlight the need for secure task coordination and communication in 

distributed automotive systems [11]. 

 Although extensive academic research and industrial adoption have been achieved, to the best of our knowledge, there 

exists no comprehensive application which unifies the aspects (i.e., energy-efficiency; real-time scheduling; secure 

operation) during AV-heterogeneous SoC design. Previous work has investigated methods such as task-structure-aware 

scheduling [6] or GPU-based deep learning optimization [7], as well as dynamic system reconfiguration under energy 

constraints [2]. Nevertheless, the practical and theoretical challenges in incorporating such approaches into end-to-end 

autonomous driving stacks persist. 

 The goal of this paper is to present a systematic literature review and critical study on the recent energy-aware task 

scheduling approaches for autonomous vehicular systems running on heterogeneous computing architectures. Rather than 

introduce new algorithms, we are concerned with observing how existing solutions, both from commercial trends and 

academic concepts, tend to organize task allocation and processor coordination AND secure execution under constraints 

of efficiency and real-time guarantee. The observations reported here are intended to recognize current challenges and 

suggest directions for designing future energy-aware and secure heterogeneous computing platforms in autonomous 

vehicle systems. 

 

2. Background 

 

As autonomous vehicles (AVs) have become smarter, the computational complexity of their software systems has 

grown with each new advance. These systems must process an enormous quantity of data from cameras, Light Detection 

and Ranging (LiDAR) sensors, radars and other sensors. For these systems to do this in a timely and safe manner, as well 

as (more difficult yet) meeting strict real-time criteria, is crucial, especially for brake control, obstacle avoidance and 

lane-keeping tasks. However, to meet these performance demands, today's AV platforms use a variety of processing 

elements. These range widely from more typical CPUs like ARM-architecture microprocessors to GPUs and often FPGAs 

(or ASICs). Each processor has its advantages: 

1. High-performance sequential control tasks, logic-heavy processing and system orchestration are all handled well 

by CPUs. 

2. With their massive parallelism, GPUs provide a great fit for computationally intensive tasks such as deep 

learning inference and point cloud processing. 

3. FPGAs are commonly used in preprocessing sensor data or safety-critical modules. They offer low latency along 

with highly customised data path control facilities. 

This wide range of processing units not only brings flexibility and power but also raises fundamental questions of how 

to match tasks effectively across them in ways which strive for a balance between categories such as performance, real-

time constraints, and security. 

 

2.1 Task Scheduling in Autonomous Systems 

 

Task scheduling is the process of determining which tasks should run on which processor at any given time. In the 

context of AVs, computational tasks differ not only in complexity but also in their urgency and timing. Scheduling 

decisions that are made poorly will mean that a task misses its deadline for whatever reason; this usually results in unsafe 

behaviour. Worse still, if tasks are not isolated or lack security, then faults and cyber threats can spread from module to 

module unimpeded.  

 
Fig. 1 . Task scheduling in autonomous vehicles 
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The task-to-processor assignment used in this work is shown in Fig. 1, adapted from [14]. On the left, perception and 

actuation workloads generate input flows that enter the central Task-to-Processor Mapping and Execution stage, where 

they are scheduled onto heterogeneous units. The right-hand side shows the on-board multiprocessor SoC (CPUs/GPUs) 

executing the tasks, while a cloud uplink is reserved for non-safety-critical analytics and storage. Arrows indicate data 

flow and motivate why the placement fits the scheduling discussion. 

 

 

2.2 Energy-Aware Scheduling 

 

For AVs, especially those on electric vehicle (EV) platforms, energy efficiency is a crucial consideration. Each kind 

of processing unit is a glutton when it comes to power, and poor scheduling gives rise to overheating, diminished battery 

range or the requirement of under-clocking to respond to thermal pressure. Energy-aware scheduling involves organising 

tasks onto processors to minimise their energy consumption without degrading performance or safety. Techniques include 

dynamic workload balancing, power gating and keeping track of hot sections that are temperature sensitive. 

 

2.3 Task Criticality and Mixed-Criticality Systems 

 

The tasks in AV systems may be classified as critical or non-critical according to their influence on safety. Critical 

tasks include real-time control, braking and sensor fusion modules. System breakdowns or accidents are the direct result 

of malfunctions in these areas. 

 

2.4 Non-critical Tasks 

 

Non-critical tasks include user-interface processing, infotainment, and logging. If the system allows both types of 

tasks to share a hardware platform, it is a mixed-critical system. Careful scheduling and isolation are necessary to avoid 

situations where non-critical faults or delays interfere with the critical operations of safety. 

 

2.5 Secure Execution and Isolation 

 

Security is a major concern. Autonomous vehicles are subject to both physical and network-based threats. This 

necessitates secure execution through task isolation. Hardware features such as memory protection, privilege separation 

or trusted execution environments (e.g., ARM TrustZone, Intel SGX). Software containers and microkernels that enforce 

task separation and restrict access to shared resources. Effective task scheduling should take these requirements into 

account, ensuring that tasks from different security domains do not interfere with one another. 

 

2.6 Purpose of this Paper 

 

This paper is not going to introduce a new task scheduling algorithm or framework. Rather, it focuses on: Looking at 

current industry and research practices for energy-aware task scheduling on AVs. How these systems succeed or fail in 

managing criticality, coordinating processors to satisfy energy constraints and providing protection. Highlighting 

limitations, gaps and new opportunities for more integrated, intelligent scheduling strategies in the future. 

 

 

3. Review of Existing Systems 

 

In this part, we will try to review a selection of prominent industry platforms and academic systems that support AV 

functionality. Each is titled according to the target task scheduling, power efficiency, and secure execution on substrate 

platforms, which contain security processing units within central processing units implicitly or explicitly as part of their 

design.  

3.1 NVIDIA DRIVE 

NVIDIA’s DRIVE [8] platform is the most widely used autonomous driving solution for commercial and research 

AVs. It is equipped with multi-core ARM CPUs, high-throughput GPUs and dedicated Deep Learning Accelerators 

(DLAs). Task scheduling is usually performed by applications using NVIDIA's SDKs (e.g., DriveWorks, TensorRT), and 

then developers are responsible for the detailed deployment of the workload CPU, GPU and DLA. While NVIDIA's 

design does support high-performance inference and real-time sensor processing, its ability to schedule for energy leads 

to less tightly organised scheduling behaviour. Developers may use Dynamic Voltage and Frequency Scaling (DVFS) or 

thermal-aware power domains, but these are hardware features and cannot be considered software-level schedulers in any 

meaningful sense of the term. Security is handled at the system level, with support for secure boot, root of trust, memory 
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partitioning and so on. Little integration between the scheduling logic and isolation means little attention is paid to 

incorporating these principles into concrete mechanisms for practical enforcement of the security policy. 

3.2 Tesla Full Self-Driving Computer 

Tesla’s FSD [9] computer has a custom-built SoC architecture that consists of two redundant chips. Inside are CPU 

clusters, GPU cores, and specialised Artificial Intelligence (AI) accelerators on each chip. The platform has been 

developed to be highly redundant for the parallel execution of perception and planning pipelines on different chips. 

Scheduling is an internal detail, but Tesla seems to do static partitioning and use the dedicated compute blocks for some 

workloads. Energy management is probably implemented at the level of silicon, with dedicated logic for reducing power 

consumption under idle or partial-load conditions. Security mechanisms such as fault detection and watchdogs are found, 

but due to the closed-end nature of the system, it is hard to evaluate how dynamic or adaptable the task scheduling model 

is, especially when different driving situations or processor loads are taken into consideration. 

3.3 Mobileye EyeQ 

Mobileye’s EyeQ [10] series is dedicated to vision processing and deployed in many Levels 2–3 AVs. Its design is 

based not on GPGPUs but on highly optimised ASICs. This is very energy efficient, but less flexible. EyeQ systems are 

deterministically assigned hardware-pipelined (statically) such that performance can be guaranteed. Although it provides 

fine-grained control over when actions execute and how much energy they consume, it doesn’t provide a way to either 

schedule actions dynamically during execution or to adapt to changes in the environment or the availability of resources. 

The platform is tailored for use in the context of ISO 26262 ASIL-D requirements with high safety integrity levels, which 

is less appropriate for full-stack autonomous systems making on-board decisions which require the reconfiguration of 

tasks 

3.4 AUTOSAR Adaptive Platform 

AUTOSAR Adaptive [11] is a software platform designed for new-generation ECUs, which are used in ADAS & 

AVs. It is capable of service-oriented communication, POSIX-compliant OS environments and deterministic application 

execution. AUTOSAR Adaptive does not support energy-aware scheduling. On the contrary, power management is 

commonly devoted to the ECU as OEM-dependent approaches. Also, task scheduling policies depend on the RTOS and 

the middleware selected by the designer. From the security point of view, AUTOSAR Adaptive provides some degree of 

support for role-based access control, secure communication and application separation. But these capabilities are not 

coordinated well with scheduling logic, and coordination between energy, timing, and security becomes suboptimal. 

3.5 ROS2-Based Research Platforms 

ROS2 [12] is commonly employed both in academic and open-source AV projects. It facilitates the distributed, 

modular design of AV functions, with nodes executing on various processing nodes. Real-time execution is also partially 

supported in ROS2 using the OpenSplice DDS middleware, and with Real-Time Operating Systems (RTOS) on systems 

such as RT Linux. There is no built-in support for energy-aware scheduling in ROS2. All energy optimisations must occur 

from the OS up or at a hardware level. Likewise, task criticality and fault isolation must be imposed manually, e.g. using 

containerization or external safety supervisors. Despite its flexibility, ROS2 is still constrained in system-level integration 

of scheduling, energy and security, deciding between the two rather than being a prototyping platform rather than a 

production-level AV solution. 

4. Analysis and Observations 

Based on these platforms, some trends and deficiencies can be identified, which indicate the status and immaturity of 

autonomous vehicle integrated energy-aware secure scheduling to a large extent. 

4.1 Lack of Dynamic Scheduling Intelligence 

Most of the platforms are based on a static or semi-static task assignment model. Real-time dynamic scheduling that 

considers the load on the network, available power, or the criticality of the task has not been well addressed. This may 

result in over-utilisation (and thermal strain) or under-utilisation (and wasted performance). 

4.2 Disjoint Energy and Security Management 
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A lack of consideration is given to energy and security as a joint issue. Although energy principles can exist (DVFS, 

idle modes) and security features like secure boot can be supported, few systems integrate these during scheduling 

decisions. There is no known system that automatically schedules tasks to achieve both power efficiency and an isolation 

domain. 

4.3 Minimal Support of Mixed-Criticality Systems 

Even when these assumptions are not posed, most systems that are aware of mixed-criticality requirements (e.g., 

AUTOSAR) provide very limited actual runtime separation and priority management of such tasks. This is dangerous for 

system stability and functional safety in case of high calculating load, or partial failure. 

4.4 Limited Interoperability and Openness 

Closed-source providers such as Tesla and Mobileye provide minimal visibility into how they make scheduling 

decisions, so it is challenging to draw comparisons between solutions. At the same time, open platforms such as ROS2 

are not yet mature and integrated enough for commercial deployment of AV (Table 1). 

To facilitate a qualitative comparison of the five AV platforms in this paper, Table 1 summarises them. The table 

compares each system according to 5 main characteristics: task scheduling mechanism, energy-awareness, security and 

isolation functions, support for mixed-criticality workloads and openness to the research/development community. The 

following table summarises the portability and integration maturity of these platforms.  

For example, to schedule in the power and task domain of developer-level control on NVIDIA DRIVE; however, it 

does not include something for criticality-based scheduling. Meanwhile, Mobileye’s EyeQ supports extremely efficient 

computation, but is inflexible because of its fixed-function nature. This table aims to provide readers and reviewers with 

an overall view of the strengths, weaknesses and limitations for each system immediately, facilitated by detailed 

discussion presented in the previous section.  

Platform Task 

Scheduling 

Approach 

Energy-Aware 

Support 

Security & 

Isolation 

Mixed-

Criticality 

Support 

Openness/Availability 

NVIDIA 

DRIVE 

Manual/ 

developer-

driven 

Hardware-level 

DVFS, power 

domains 

Secure boot, 

memory 

partitioning 

Partial 

(developer 

managed) 

Partial (SDK access) 

Tesla FSD Likely static, 

internal only 

Custom chip 

design, likely 

hardware-

managed 

Hardware 

watchdogs, 

dual 

redundancy 

Via chip 

separation 

Closed source 

Mobileye EyeQ Static/hardware 

pipeline 

Extremely 

efficient ASIC-

based design 

Meets ASIL-D, 

strict isolation 

Limited Closed source 

AUTOSAR 

Adaptive 

OS/middleware 

dependent 

Vendor-specific 

implementations 

Role-based 

access, secure 

comms 

Theoretical 

support 

Open source 

ROS2-based 

Systems 

OS-level & 

node-based 

(flexible) 

None natively Optional via 

SROS2, 

containers 

Developer-

defined only 

Fully open source 

 

Table 1. Comparison of task scheduling, energy-awareness, security, and system openness across representative 

autonomous vehicle platforms. 

5. Experimental Results 

While the main topic of this work is a thorough overview of existing systems for energy-aware task scheduling in 

secure AVs, we present a simple simulated example below to demonstrate the challenges when allocating tasks to a 

target platform with a heterogeneous amount of processing capabilities. This is not intended as a performance 

benchmark. The purpose is to demonstrate the concept of how scheduling impacts energy and execution time in real AV 

systems. 
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To emulate a realistic workload in an autonomous driving context, we define three representative tasks: 

• T1: Object Detection (compute-intensive, latency-tolerant) 

• T2: Emergency Braking (time-critical, safety-sensitive) 

• T3: Lane Keeping Control (low latency, real-time loop) 

These tasks are mapped to three processor types commonly used in AV platforms: 

• CPU (deterministic control, lower power) 

• GPU (parallel high-throughput, high energy) 

• FPGA (low latency, energy-efficient) 

Simulation results show that Scenario B (Energy-aware mapping) saves 45% of the total execution time and 41% of 

the energy consumption compared to Scenario A, which uses an energy-unaware allocation. Placing the safety-critical 

Emergency Braking on the CPU improves both energy efficiency and the task determinism at runtime, while transferring 

the Lane Keeping Control to the FPGA provides the low-latency processing. While this is a step toward increasing the 

efficacy of both offline and online task scheduling policies based on complex real-world data, we posit this as an 

encouraging average case that should be used to vet other scheduling policies for intelligent frameworks in simulation, 

which, even in simulation, have the potential to provide large improvements in terms of both energy and response time 

in real time AV systems. Although actual results may vary according to hardware and task models, the direction 

demonstrated indicates the need for context-aware, dynamic scheduling schemes on heterogeneous AV platforms. This 

is a demonstrative simulation, not based on actual hardware experiments. However, it does help to confirm the usefulness 

of the design considerations presented in the earlier sections. We may also develop this simulation on a real-time 

middleware platform (e.g., ROS2 with DDS), and model it on machines (e.g., NVIDIA Jetson, Drive AGX, AUTOSAR 

Adaptive-based ECUs).  

We provide a light runtime-supervision layer, which subscribes to raw and pre-processed sensor topics, and performs 

inference with small neural models on the CPU side. The monitor emits raised events (anomalous, drifting and missing 

frames) that the scheduler treats as soft signals for admission control and mode switching without rejecting components 

responsible for controlling any safety-critical loops. To minimize overheads, inference is rate-limited and memory-

pinned and put in a separate domain. This architecture is motivated by previous results indicating that NN-based 

monitoring of sensor signals can be performed with an acceptable latency and resource footprint for online applications 

[13]. 

Task Scenario A Exec. Time 

(ms) 

Energy 

(mJ) 

Scenario B Exec. Time 

(ms) 

Energy 

(mJ) 

Object 

Detection 

CPU 40 35 GPU 18 60 

Emergency 

Braking 

GPU 12 50 CPU 10 12 

Lane 

Keeping 

Control 

GPU 10 48 FPGA 6 7 

Total  62 133  34 79 

 

Table 2. Comparison of task execution time and energy consumption under naive vs. energy-aware task scheduling 

strategies. 

Table 2 illustrates the impact of assigning perception, safety-critical tasks, and control to the appropriate processing 

units, such as CPU, GPU, and FPGA. The energy-aware scenario achieves significantly lower overall energy usage and 

improved response times through criticality-aware task allocation and hardware. 

6. Challenges and Limitations 

The overview of today’s systems highlights the multiple challenges that the research community and industry face in 

paving the way towards more dependable, secure, and energy-efficient autonomous vehicle platforms. 

6.1 Unified Scheduling Strategies 
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There is an urgent demand for schedulers which take timing constraints, energy budget, processor utilisation and task 

criticality into consideration. A unified approach will require running on multiple hardware domains (CPU, GPU, FPGA) 

on the fly. 

6.2 Cross-Layer Security and Scheduling Integration 

In the future, security should be part of the task scheduler rather than a bolt-on. e.g., the verification of the operation's 

origin, the assignment of rights to be executed, or the separation during execution of potentially unsafe or faulty code 

parts. 

6.3 Middleware-Level Support 

Native middleware-level APIs for measurement of power, task profiling and dynamic load balancing should be 

supported by AV stacks. It would have allowed application developers to write scheduling-friendly code without having 

to understand much about the hardware. 

6.4 Evaluation Frameworks and Benchmarks 

In such systems, since users’ job experience makes their experiments more reproducible and results more reliable, we 

must procure open benchmarking environments to perform comprehensive performance evaluation of scheduling and 

energy management strategies under realistic workloads and fault conditions. They would facilitate academia-industry 

collaboration on best practices benchmarking. 

6.5 Implications / Consequences 

Enforcing energy and security-aware scheduling can further enhance AV range and diminish thermal throttling by 

smarter DVFS and load placement, better respect of deadlines for safety-critical loops through criticality-aware mapping, 

reduce lifetime costs by lowering the impact of thermal stresses on components, as well as lower attack surface area by 

enforcing isolation domains at scheduling time. Possible downsides: Complexity and potential overhead for the scheduler 

of added data that needs to be limited and justified (ISO 26262). Power, thermal, and isolation telemetry may demand 

more observability. Portability or certification issues involving various vendor APIs, Vendor lock-in if there are 

proprietary power/thermal/security interfaces. 

6.6 Limitations 

We have built a qualitative review, relying on what is publicly available documentation for such platforms as Tesla or 

Mobileye; this limits the ability to verify our claims through means such as telemetry or isolation mechanisms. Our table 

shows a simulated system. Although the numbers are easily tested directly on real hardware, they omit memory 

bandwidth, data-movement overheads, interference into interconnect contention latencies and sensing/actuation lag. 

Changes in environmental temperature, such as heating up and cooling down processes that respond to changes in how 

hard you keep both power transformer windings connected to one amplifier or another--these are not considered. Of 

course, with individual thermal simulations, no actual temperatures or powers reached the physical object being modelled. 

We also do not provide a single unifying cross-platform benchmark or support, so our work may only generalise to 

heterogeneous SoCs with similar accelerator mixes from different vendors and power/thermal APIs. Future work in this 

area must include hardware-in-the-loop experiments, standardised workloads, and physically measured 

power/temperature fluctuation traces. 

6.7 Interpretation of Results 

The toy experiment in Table 2 suggests that mapping, which is conscious of criticality and energy-wise lowers both. 

If you assign Emergency Braking to the CPU and Lane Keeping to the FPGA, the total time falls to (62 → 34 ms), and 

energy also dips down along the curve (133 → 79 mJ). However, if you move heavy perception into the GPU, it keeps 

the throughput unchanged. These developments align nicely with earlier findings that (i) heterogeneous offloading 

enhances speed through acceleration paths lined up well with data structures [6], [7]; and (ii) energy saving comes when 

safety-critical, tight-loop control goes on low-latency, low-power sources [2], [4]. One key point is that latency is 

minimised for all critical tasks while levels off are reached in terms of energy/thermal. But because in these benchmarks 

there is no bus contention or thermal effects penetrating standard workloads, readers might form their own judgment as 

to the values, as a clue at least. And because isolation-aware placement of real-time control tasks on (CPU, FPGA), and 
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perception tasks on (GPU) is consistent with our thesis, this kind of tested hardware evaluations in Part II support our 

arguments. 

7. Conclusion 

The ongoing development of autonomous vehicles is conditioned largely on the progress made at the system level – 

beyond simply increasing numbers of sensors and increasing the complexity of the processing algorithms – and in the 

areas of task scheduling, energy efficiency, and secure execution. We had accordingly offered a systematic analysis of 

how state-of-the-art AVs deal with these factors in multi-processor settings. Although significant improvement of 

hardware performance and functionality has been achieved, our investigation discovers a huge space in integrated 

scheduling intelligence, energy-efficient task scheduling, and run-time security isolation. Existing systems generally 

address them in an isolated manner; thus, the adaptability and robustness under various practical constraints are restricted. 

Quantifying these gaps and surveying architectural trends, this paper establishes a foundation for future works that seek 

to narrow the gap between platform potential and software intelligence. Collaboration between industry and academia 

will be crucial in the pursuit of the subsequent generation of fast, smart autonomous systems that are also efficient, secure, 

and reliable. Current approaches often concentrate on improving one area while overlooking others. This can make 

vehicles inefficient or unsafe. The typical use of different architectures, such as CPUs, GPUs, and FPGAs, highlights the 

need for unified planning tools that can address power consumption, response time, and safety requirements. Dealing 

with these trade-offs through a combined, multi-layered design will be crucial for developing platforms that are both high-

performing and reliable in real-world situations. 
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