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Abstract 

 

The evaluation of Smart Grid (SG) efficiency requires a value-based perspective that incorporates decision-maker 

preferences alongside technical metrics. This study develops an integrated framework combining Data Envelopment 

Analysis (DEA) with the Flexible and Interactive Tradeoff (FITradeoff) method to assess SG efficiency. The approach 

begins with standardized DEA to identify an initial set of efficient DMUs, followed by an iterative preference elicitation 

process in which decision-makers provide pairwise comparisons of weight ratios. These preferences are translated into 

linear constraints that progressively contract the weight space through a robust optimization procedure with baseline 

weight restrictions. The algorithm systematically reduces the efficient set, terminating when a unique DMU is identified 

or the candidate set becomes sufficiently narrow. This framework offers a structured, transparent, and mathematically 

rigorous tool for identifying SG alternatives that align with strategic priorities and support preference-driven decision 

making. 

 

Keywords: Smart Grids; Data Envelopment Analysis (DEA); Flexible and Interactive Tradeoff (FITradeoff)  

 

 

1. Introduction  

 

The global energy sector is undergoing a paradigm shift driven by the increasing penetration of renewable energy, 

digitalization, and the need for enhanced efficiency in energy management [1], [2], [3], [4]. Renewable energy sources, 

such as wind and solar, introduce variability and complexity that challenge traditional centralized grids, requiring 

sophisticated evaluation and optimization strategies to ensure reliability and sustainability [1], [2]. In this context, Smart 

Grids (SGs) have emerged as a cornerstone of modern energy infrastructure, integrating distributed energy resources, 

enabling self-healing capabilities, and optimizing large-scale grid operations [5], [6]. However, assessing the performance 
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of these complex systems remains challenging, as it involves balancing multiple, often conflicting criteria spanning 

economic, technical, and environmental dimensions [7]. This multi-faceted nature creates a classic multi-criteria decision-

making (MCDM) problem [8], necessitating frameworks that can holistically capture the integrated efficiency of SGs to 

guide strategic investment and policy decisions. To address the need for multi-dimensional benchmarking, Data 

Envelopment Analysis (DEA) [9] has been extensively applied in energy and environmental studies. As a non-parametric 

frontier analysis technique, DEA excels at evaluating the relative efficiency of homogeneous Decision-Making Units 

(DMUs), such as regional power grids or electricity distribution companies, without requiring a priori weight assignments. 

Its application in the power sector is well-established, ranging from assessing the sustainability performance of electric 

utilities in the United States [10] to benchmarking the operational efficiency of thermal power plants in China [11]. 

Nevertheless, the core strength of conventional DEA allowing each DMU to select its most favourable weights to 

maximize its own efficiency score, introduces a critical drawback for decision-making. This flexibility often leads to the 

"multiple-winner dilemma," where a large number of DMUs are identified as fully efficient [12]. The output is a set of 

efficient utilities or regional grids, leaving planners and investors without a definitive, justifiable answer to the 

fundamental question: "Which one is the best choice"? This indecisiveness severely limits DEA's utility in contexts 

requiring a unique selection, such as competitive funding allocation for large-scale grid modernization or strategic 

national infrastructure planning. Integrating preferences into DEA: The quest to incorporate decision-maker preferences 

into DEA to overcome its limitations has followed two primary streams, each with significant and well-documented 

shortcomings: (1) Direct weight restrictions, including approaches such as assurance regions [12] and cone-ratios, impose 

explicit bounds on the DEA weight space. By constraining the set of feasible weights, these methods can reduce the 

number of units classified as efficient, as overly extreme or unrealistic weight combinations are eliminated [13]. However, 

such restrictions have been widely criticized for their reliance on externally imposed and often subjective limits, which 

may not accurately capture the nuanced preferences or value system of the decision maker [14]. Consequently, while 

mathematically convenient, these constraints may lack a robust decision-theoretic foundation and do not necessarily 

produce solutions that are truly value-optimal [13]. (2) Integration with MCDM Methods. A more popular approach 

hybrids DEA with MCDM techniques. The most common is the AHP-DEA model, frequently applied in energy project 

selection, such as in the efficiency assessment of thermal power plants [15]. While decisive, this method inherits AHP's 

well-documented flaws: it requires many precise pairwise comparisons at the ratio scale upfront, creating a high cognitive 

burden [16]. Furthermore, it suffers from potential rank reversal, and its theoretical foundation is sometimes questioned 

for being disconnected from the axioms of multi-attribute value theory (MAVT) [17]. Other integrations, like those with 

TOPSIS [18], often determine a static preference structure ex-ante, failing to interactively refine the solution based on the 

evolving understanding of the efficient frontier. 

 

    In parallel, the field of MCDM has seen advances in more robust preference elicitation methods grounded in MAVT. 

The FITradeoff method [19] stands out as a state-of-the-art approach. Its core mechanism involves eliciting holistic 

pairwise comparisons of consequences from the DM, from which it infers linear constraints on the ratios of the scale 

constants in an additive utility function. Through an iterative process, it progressively reduces the feasible weight space 

to identify the most preferred alternative. Owing to its theoretical foundation in MAVT, which relies on more intuitive 

trade-off judgments rather than precise ratio-scale comparisons, a growing body of literature positions FITradeoff as a 

cognitively more efficient alternative to AHP, typically requiring fewer and less demanding pairwise inputs from the 

decision maker [20], and is theoretically sounder due to its direct foundation in MAVT axioms. Its applications have 

grown, including in supply chain selection and maintenance planning [21]. However, a critical analysis of the literature 

reveals a stark limitation: its powerful engine for iteratively constraining the weight space has been exclusively applied 

in traditional MCDM problems with a pre-defined, limited set of alternatives. Its potential has never been harnessed to 

address the fundamental weight flexibility problem in DEA, where the alternatives are the virtually infinite weight vectors 

within the DEA feasible region, and the goal is to rank a set of DMUs on an efficiency frontier. 

 

    The literature reveals a clear and compelling schism. DEA provides an objective efficiency benchmarking tool but fails 

to deliver a unique solution [12], while existing preference-integration methods are either theoretically and cognitively 

flawed (AHP) or have not been adapted to the specific mathematical and philosophical context of frontier-based efficiency 

analysis. The shortcomings of existing hybrid models highlight the need for a new synthesis that is both methodologically 

rigorous and practically decisive. This study bridges this gap by proposing a novel Value-Based Decision Framework that 

integrates DEA [9] with the FITradeoff method. Our work is designed to directly counteract the identified limitations and 

makes the following contributions. (1) To overcome the indecisiveness of DEA and the arbitrariness of weight restrictions 

[14], we develop a model where the weight space is not subjectively bounded but is systematically and rationally reduced 

by the DM's own value judgments, elicited through FITradeoff 's trade-off questions. This ensures the final unique 

solution is both Pareto-efficient on the frontier and value-aligned, directly solving the "multiple-winner dilemma" [12]. 

(2) To overcome the cognitive burden and theoretical issues of AHP-DEA integrations [16], [17], we replace AHP with 

FITradeoff. Our framework leverages FITradeoff 's cognitively efficient, holistic trade-off questions, significantly easing 

the DM's burden and providing a theoretically rigorous foundation for preference incorporation based on the axioms of 

MAVT. (3) To unlock the potential of FITradeoff for a new class of problems, we pioneer its application to frontier 

analysis. We create a novel, dynamic feedback loop where DEA identifies the efficient frontier and FITradeoff 
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interactively refines the weights, converging to a single, preference-optimal SG. This provides a defensible, decision-

centric tool for energy investment and policy, effectively translating the theoretical power of trade-off-based elicitation 

into a practical solution for complex efficiency evaluation problems. 

   The remainder of this paper is organized as follows. Section 2 reviews the theoretical foundations of DEA and the 

FITradeoff method. Section 3 presents the proposed preference-guided DEA framework integrating the FITradeoff 

approach. In Section 4, the applicability and effectiveness of the proposed method are demonstrated through an empirical 

evaluation of SG efficiency. Finally, Section 5 concludes the paper and discusses potential directions for future research. 

 

2. Theoretical background: DEA and FITradeoff methods 

 

This section delineates the theoretical underpinnings of the integrated evaluation framework proposed in this study. It 

commences with a critical exposition of DEA, establishing its role as the foundational engine for efficiency benchmarking. 

Subsequently, the discussion pivots to the imperatives for incorporating decision-maker preferences, thereby introducing 

the FITradeoff method as the mechanism for value-driven refinement. A nuanced comprehension of these constituent 

methodologies is paramount for appreciating their synthesis in the subsequent model development. 

 

2.1 Data envelopment analysis 

 

DEA is a non-parametric performance evaluation technique that utilizes linear programming to assess the relative 

efficiency of a set of homogeneous DMUs. Its core premise is to construct a piecewise linear efficiency frontier from the 

best-performing DMUs, against which all other units are benchmarked. The seminal CCR model establishes the 

foundational linear programming formulation under the assumption of constant returns to scale [9]. For a target DMU₀, 

the input-oriented model is specified as follows: 

 Max 𝜃0 = ∑ 𝑢𝑟𝑦𝑟0

𝑠

𝑟=1
 

(1) 

∑ 𝑣𝑖𝑥𝑖0

𝑚

𝑖=1
= 1   (2) 

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0, ∀𝑗 = 1,2, … , 𝑛

𝑚

𝑖=1
 (3) 

 𝑢𝑟 ≥ ε, 𝑣𝑖 ≥ ε, ∀ 𝑟, 𝑖                                            (4) 

where 𝑥𝑖: Input indicator 𝑖; 𝑦𝑟: Output indicator 𝑟; 𝑣𝑖 , 𝑢𝑟: Virtual weights (multipliers) for inputs and outputs, respectively; 

𝜃0: Efficiency score of the target DMU₀ 

• Equation (1) maximizes the virtual output of DMU₀. 

• Equation (2) normalizes the virtual input of DMU₀ to 1, establishing a common benchmark for comparison. 

• Equation (3) ensures that no DMU can achieve an efficiency score greater than 1 under the same set of weights, 

thereby defining the efficiency frontier. 

• Equation (4) with a non-Archimedean infinitesimal (𝜀) prevent the model from assigning zero weights to any 

factor, ensuring all inputs and outputs are considered. 

    The efficiency score 𝜃0  for each DMU is obtained by solving this linear program. A DMU is considered Pareto-

efficient (lying on the frontier) if 𝜃0 = 1. A score of 𝜃0 < 1 indicates that the DMU is inefficient, meaning there exists a 

combination of other DMUs that can produce at least the same level of outputs with fewer inputs. The principal strength 

of DEA lies in its ability to identify an objective efficiency frontier without requiring prior parametric assumptions about 

production technology. However, a key limitation is the potential for multiple optimal solutions, the "multiple-winner 

dilemma" as each DMU is evaluated using the set of weights most favourable to itself. 

 

2.2 Flexible and Interactive Tradeoff method 

 

The FITradeoff method is an advanced MCDM technique grounded in MAVT [19]. Its core strength lies in its adaptive 

preference elicitation process, which progressively refines the decision-maker's preferences through intuitive, holistic 

trade-off questions, significantly reducing the cognitive burden associated with methods like AHP that require precise 

ratio-scale comparisons. FITradeoff does not require the decision-maker to specify precise criterion weights upfront. 

Instead, it employs an iterative questioning procedure where the decision-maker compares pairs of consequence profiles. 

These preference statements are translated into linear constraints on the feasible space of criterion weights, systematically 

narrowing down the set of possible optimal solutions. 

At the heart of FITradeoff's iterative process is a linear programming model designed to test the potential optimality of 

an alternative 𝑎𝑘  given the current set of preference constraints. The linear programming model for testing 

alternative 𝑎𝑘 is formulated as follows: 
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Max ∑ 𝑤𝑖 ⋅ 𝑣𝑖(𝑎𝑘𝑖
𝑛
𝑖=1 ) (5) 

∑ 𝑤𝑖 ⋅ 𝑣𝑖(𝑎𝑘𝑖

𝑛

𝑖=1
) ≥ ∑ 𝑤𝑖 ⋅ 𝑣𝑖(𝑎𝑗𝑖

𝑛

𝑖=1
), ∀𝑗 ≠ 𝑘 (6) 

𝑤𝑖+1 ≤ 𝑤𝑖 ∙ 𝑘1 − 𝜀, 𝑖 = 1,2, … , 𝑛 − 1 (7) 

𝑤𝑖+1 ≥ 𝑤𝑖 ∙ 𝑘2 + 𝜀, 𝑖 = 1,2, … , 𝑛 − 1                   (8) 

∑ 𝑤𝑖 = 1
𝑛

𝑖=1
 (9) 

𝑤𝑖 > 0, 𝑖 = 1,2, … , 𝑛 − 1  (10) 

  

where 𝑛: Number of criteria. 𝑤𝑖: Weight (scale constant) for criterion 𝑖. 𝑣𝑖(𝑎𝑘): Value score of alternatives 𝑎𝑘 under 

criterion 𝑖 (standardized). 𝑎𝑗: Other alternatives being compared. 

• Equation (5) checks whether there exists any set of weights within the current feasible region that would make 

alternative 𝑎𝑘 have the highest total value. 

• Equation (6) ensures that under the same set of weights, the total value of 𝑎𝑘 is at least as high as that of every 

other alternative. 

• Equation (7) or (8) is the core of the interaction, progressively shrinking the feasible weight space to reflect the 

decision maker's nuanced value system. 

• Equations (9) and (10) ensure the weights form a valid, positive, and normalized set. 

If the LP is feasible, alternative 𝑎𝑘  remains a candidate for the most preferred solution. If it is infeasible, 𝑎𝑘  is 

eliminated. The method then intelligently selects the next most informative trade-off question based on the updated 

constraints. This process iterates, creating a dynamic feedback loop that rapidly converges to a single, value-

optimal alternative. The power of FITradeoff lies in transforming the search for the best alternative from a static, all-

information-required-a-priori judgment into a dynamic, value-driven, and highly efficient search process, making it 

uniquely suited for complex decision scenarios. 

 

3. Preference-guided DEA with FITradeoff method 

 

In this section, we propose a novel hybrid framework, the FITradeoff-DEA model, which integrates interactive 

preference information from MCDM. By iteratively incorporating these preferences to constrain the feasible weight space, 

the model converges multiple efficient DMUs to a single, preference-driven optimal solution, thereby shifting the 

evaluation focus from purely technical efficiency to value-based decision-making. The model operates on an iterative 

principle of gradually narrowing the DEA weight space based on decision-maker preferences. Initially, all DMUs are 

evaluated without preference constraints, potentially resulting in multiple efficient units. Through an interactive process, 

preference information is elicited and converted into linear constraints, progressively reducing the feasible region. The 

iteration continues until only one DMU achieves the maximum efficiency score under the given preferences, representing 

the unique preference-driven optimal solution. 

     The following notations and definitions are introduced for clarity and consistency throughout the subsequent model 

formulation.     

• DMUs: Consider a set of 𝑛 homogeneous DMUs, denoted as 𝐷𝑀𝑈𝑗 (𝑗 = 1,2, … , 𝑛). 

•  Input and Output Indicators: 𝑥𝑖𝑗  (𝑖 = 1,2, … , 𝑚) represents the amount of input 𝑖 for 𝐷𝑀𝑈𝑗 . 𝑦𝑟𝑗  (𝑟 = 1,2, … , 𝑠) 

represent the amount of output 𝑟 for 𝐷𝑀𝑈𝑗 . 

• Weight Variables: 𝑣𝑖  is the weight assigned to input 𝑖; 𝜗𝑟 is the weight assigned to output 𝑟. 

• Efficiency Score: For a given weight combination (𝑣, 𝜗), the efficiency of 𝐷𝑀𝑈𝑗  is 𝜃𝑗 = ∑ 𝜗𝑟𝑦𝑟𝑗
𝑠
𝑟=1  . 

The following Linear Programming (LP) model is formulated for evaluating a target unit 𝐷𝑀𝑈𝑘 : 

 

Max 𝜃𝑘 = ∑ 𝑢𝑟𝑦𝑟𝑘
𝑠
𝑟=1  (11) 

∑ 𝑣𝑖𝑥𝑖𝑘

𝑚

𝑖=1
= 1 (12) 

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0

𝑚

𝑖=1
, ∀𝑗 = 1,2, … , 𝑛                                  (13) 

𝑢𝑟

𝑢𝑟+1

∈ [𝑙, 𝑝],
𝑣𝑖

𝑣𝑖+1

∈ [𝑙, 𝑝] 
(14) 
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𝑢𝑟 ≥ 𝑘1
′ ⋅ 𝑢𝑟+1  or  𝑢𝑟 ≤ 𝑘1

′′ ⋅ 𝑢𝑟+1 
 (15) 

𝑣𝑖 ≥ 𝑘2
′ ⋅ 𝑣𝑖+1 or 𝑣𝑖 ≤ 𝑘2

′′ ⋅ 𝑣𝑖+1     (16) 

𝑢𝑟 ≥ ε, 𝑣𝑖 ≥ ε, ∀ 𝑟, 𝑖                        (17) 

 

where (12) is the DEA normalization constraint. (13) is the DEA envelopment constraints. (14) are the weight ratio bounds. 

(15) and (16) are preference constraint set, a set of linear inequalities incrementally incorporated during the interactive 

process, 𝐶= {all preference information from decision maker}: output vs. output:   𝑢𝑟 ≥ 𝑘1 ⋅ 𝑢𝑟+1  implies output 𝑟 is 

deemed more important than 𝑘1
′  times output 𝑟 + 1 or 𝑢𝑟 ≤ 𝑘1

′′ ⋅ 𝑢𝑟+1 implies output 𝑟 is deemed less important than 

𝑘1
′′ times output 𝑟 + 1; input vs. input: 𝑣𝑖 ≥ 𝑘2

′′ ⋅ 𝑣𝑖+1 implies input 𝑖 is deemed more important than 𝑘2
′   times input 𝑖 +

1  or  𝑣𝑖 ≤ 𝑘2
′′ ⋅ 𝑣𝑖+1 implies input 𝑖  is deemed less important than 𝑘2

′′   times input 𝑖 + 1. (17) is the non-negativity 

constraints, a minimal positive number used to enforce strict positivity of weights.     

The model executes through a dynamic, interactive, and iterative procedure, as shown in Algorithm 1. 

 

Step 1: Problem initialization and data standardization 

Step 1.1 Load input-output data 

Inputs: 𝑥𝑖𝑗  (𝑖 = 1,2, … , 𝑚) represents the amount of input 𝑖 for 𝐷𝑀𝑈𝑗 . 

Outputs: 𝑦𝑟𝑗  (𝑟 = 1,2, … , 𝑠) represent the amount of output 𝑟 for 𝐷𝑀𝑈𝑗  

Step 1.2 Data standardization process 

For each indicator (input 𝑥𝑖𝑗or output 𝑦𝑟𝑗), the standardized value is calculated as: 

𝑧′ = 0.1 + 0.9
𝑧−min (𝑧)

max (𝑧)−min (𝑧)
                                                                                                                                                        (18) 

[0.1,1] represents the original value of any input or output variable. 

Step 1.3 Set baseline weight constraints 

Minimum weight: 𝑣𝑖 , 𝑢𝑟 ≥ ε 

Weight ratio bounds: 

Input weights 
𝑣𝑖

𝑣𝑖+1
∈ [𝐿𝑏𝑜𝑢𝑛𝑑 , 𝑈𝑏𝑜𝑢𝑛𝑑] for  𝑖 = 1,2 … , 𝑚 − 1                                                                                 (19) 

Input weights 
𝑢𝑟

𝑢𝑟+1
∈ [𝐿𝑏𝑜𝑢𝑛𝑑 , 𝑈𝑏𝑜𝑢𝑛𝑑] for  𝑟 = 1,2 … , 𝑠 − 1                                                                                 (20) 

Step 2: Initial DEA efficiency calculation 

Step 2.1 Solve multiplier DEA model for each DMU 𝑗 by (11)-(17). 

Step 2.2 Identify initial efficiency frontier. 

𝐸1 = {DMU𝑗 ∣ 𝜃𝑗
∗ ≥ 0.999}  

Record initial efficiency scores 𝜃𝑗
1 for all DMUs on the frontier. 

Step 3: FITradeoff interactive process 

While ∣ 𝐸𝑘 ∣> 1 and iteration < max iteration do: 

Step 3.1 Select weight comparison pair. 

In each iteration, the algorithm selects one weight ratio from the set of candidate pairs P ={𝑣𝑖/𝑣𝑖+1|𝑖 = 1,2 … , 𝑚 −
1} ∪ {𝑢𝑟/𝑢𝑟+1|𝑟 = 1,2 … , 𝑠 − 1} according to a two-level criterion: 

Primary criterion: the pair with the smallest number of prior elicitation questions is preferred. 

Secondary criterion: among pairs with equal numbers of prior questions, the pair with the largest current range 
(𝑈bound − 𝐿bound) is selected, as it represents the greatest remaining uncertainty. 

Only pairs with a current range exceeding a predefined threshold (e.g., 0.05) are considered for selection. 

Step 3.2 Generate comparison question. 

midpoint =
𝐿𝑏𝑜𝑢𝑛𝑑+𝑈𝑏𝑜𝑢𝑛𝑑

2
                                                                                                                                                                                     (21) 

is the ration for the selected paired of weights.  

Step 3.3 Simulate DM response. 

Computing true ratio from preset weights 

Response: 

W
or

kin
g P

ap
er

 of
 36

th 
DAA

AM
 S

ym
po

siu
m



36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING 

AND AUTOMATION 

 

 
 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = {

𝐼 𝑖𝑓|𝑡𝑟𝑢𝑒𝑟𝑎𝑡𝑖𝑜𝑛 −𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡| < 0.001
𝐵 𝑖𝑓 𝑡𝑟𝑢𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡
𝐴 𝑖𝑓 𝑡𝑟𝑢𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

                                                                                        (22) 

 

Step 3.4 Update weight boundaries 

𝐶𝑎𝑠𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = {

𝐼 𝐿𝑏𝑜𝑢𝑛𝑑 = 𝑈𝑏𝑜𝑢𝑛𝑑 = 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡
𝐵 𝑈𝑏𝑜𝑢𝑛𝑑 = 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡
𝐴 𝐿𝑏𝑜𝑢𝑛𝑑 = 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

                                                                                        (23) 

Step 3.5 Add linear constraints to constraint set C. 
If the response is not I, add corresponding linear inequality: 

For 𝑣𝑖/𝑣𝑖+1: 𝑣𝑖 − 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ⋅ 𝑣𝑖+1 ≥ 0 if (A) or ≤ 0 if (B) 

For 𝑢𝑟/𝑢𝑟+1: 𝑢𝑟 −𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ⋅ 𝑢𝑟+1 ≥ 0 if (A) or ≤ 0 if (B) 

This inequality is then incorporated into the set of preference constraints 𝐶. 

Step 4: Constrained re-evaluation of Efficiency 

Step 4.1 Solve constrained DEA for each DMU in 𝑬𝒌 with constraints  𝐶. 

Step 4.2 Update efficiency frontier 

𝐸𝑘+1 = {DMU𝑗 ∈ 𝐸𝑘 ∣ 𝜃𝑗
∗ ≥ 0.999}                                                                                                                    (24) 

Step 4.3 Handle degenerate cases 

If ∣ 𝐸𝑘+1 ∣= 0, revert last constraint, restore previous weight boundaries, set 𝐸𝑘+1 = 𝐸𝑘 

Step 5: Convergence check and termination 

Step 5.1 Termination conditions 

If ∣ 𝐸𝑘+1 ∣= 1: 

Final optimal DMU = unique member of 𝐸𝑘+1 

Output: Found preference-optimal solution→ terminate 

Else if ∣ 𝐸𝑘+1 ∣> 1 and maximum of iterations reached: 

Output: Multiple candidate DMUs remain 

Conduct cross-efficiency analysis → terminate 

Else: 

𝑘 = 𝑘 + 1→ return to Step 3 

Step 6: Result analysis and recommendation 

Step 6.1 Calculate final efficiency rankings 

Compute 𝜃𝑗for all DMUs under final constraint set 𝐶 

Step 6.2 Output recommendation 

If unique optimal DMU, final recommendation DMU can be considered as the optimal choice under preferences. 

 

Algorithm 1. FITradeoff -DEA preference elicitation 

 

4. Case study: application to power company efficiency evaluation 

 

To empirically evaluate the effectiveness of the proposed FITradeoff -DEA model, we perform numerical analysis 

using a widely recognized dataset in SG efficiency studies. Specifically, we employ the input and output indicators of 15 

power companies originally reported by Yu et al. [22]. This dataset is well suited to our analysis as it is constructed under 

the EPRI framework and sourced from the Transportation Monitoring Centre of the State Grid Corporation of China-an 

authoritative and reliable data provider. Building upon this established dataset allows for a direct and consistent 

comparison with prior research outcomes, thereby underscoring the distinctive contributions of our proposed approach. 

 
 Input Output 

Power 

company 

Power 

grid 

investment 

(10⁴ yuan) 

Infrastructure 

investment 

(10⁴ yuan) 

Technological 

investment 

(10⁴ yuan) 

Marketing 

investment 

(10⁴ yuan) 

Information 

technology 

(10⁴ yuan) 

Total 

profit 

(10⁴ 

yuan) 

Electricity 

sales 

(106 kwh) 

Purchase 

price 

(Yuan / 

103 kwh) 

Fujian 1260422 1158031 69000 153615 17139 239868 1397.80 214.16 

Tianjin 620911 547966 22845 111471 12491 95404 6078.01 237.29 
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Hebei 912164 850828 40977 118861 13541 89700 13908.7 210.08 

Jiangsu 2977447 2765963 121570 388372 17518 686197 38488.3 152.91 

Shandong 2804030 2615571 107399 283868 18150 595476 32978.29 123.09 

Shanghai 1079683 628907 128095 153731 29877 110202 11174.96 224.62 

Shanxi 926989 807855 46466 185648 13989 88613 16295.99 126.32 

Zhejiang 2290509 2134974 99994 239306 18355 588559 28026.15 217.98 

Anhui 1125446 961436 107345 126241 15914 75821 1250.51 191.20 

Beijing 643251 594054 28141 132705 14041 152093 7920.60 206.48 

Hubei 1136556 1008999 53240 171112 17442 71546 1190.21 196.62 

Hunan 891914 776652 45236 155489 16123 71723 961.89 200.39 

Henan 1387564 1258219 87000 122140 18701 126149 2399.22 112.26 

Jiangxi 877297 800046 22470 102954 16176 65327 730.40 252.21 

Sichuan 2838232 2592478 157049 181748 19244 99523 180.40 159.64 

 

Table 1. The dataset for SG efficiency evaluation 

 

The FITradeoff-DEA methodology was implemented following the algorithmic procedure described in Section 3, with 

parameters configured to ensure both robustness and practical applicability. Key settings included: weight ratio bounds 

of 0.01–100 for all input (𝑣𝑖/𝑣𝑖+1 ) and output (𝑢𝑟/𝑢𝑟+1 ) comparisons, providing reasonable proportionality while 

allowing flexibility; a minimum weight threshold of 10-6 to prevent trivial solutions; a convergence threshold of 0.05 for 

weight ranges, excluding sufficiently determined weight pairs from further elicitation; an efficiency frontier threshold of 

θ ≥ 0.999 to account for numerical precision; and a maximum of 25 iterations to balance solution quality and 

computational effort. These settings were informed by preliminary sensitivity analyses and are consistent with established 

practices in DEA and MCDM literature. 

All input and output indicators were first standardized using min-max normalization to map values onto a [0.1, 1] scale, 

ensuring comparability across heterogeneous units. Initial DEA evaluation identified multiple efficient DMUs along the 

production frontier, confirming the presence of the "multiple-winner dilemma" that motivates the preference-based 

approach. The subsequent FITradeoff interactive preference elicitation involved six weight ratio comparisons (𝑣1/𝑣2,  

𝑣2/𝑣3 , 𝑣3/𝑣4 , 𝑣4/𝑣5  for inputs 𝑢1/𝑢2 , 𝑢2/𝑢3  for outputs). Simulated decision-maker responses, derived from preset 

preference weights, were used iteratively to refine the feasible weight space by adding linear constraints until convergence 

criteria were met. 

 

4.1 Iteration Process and Results 

 

The FITradeoff-DEA methodology produced a systematic convergence pattern that effectively resolved the initial 

multiple-winner dilemma. Table 2 summarizes the iterative DMU elimination process. Initially, seven DMUs: Tianjin, 

Hebei, Jiangsu, Shanxi, Zhejiang, Beijing, and Jiangxi were identified on the production frontier with perfect efficiency 

scores (𝜃 = 1.000). As iterative weight ratio comparisons were applied, the candidate set was progressively narrowed. 

Early iterations exerted limited impact on the overall candidate set, whereas later iterations particularly from iteration 10 

onwards resulted in a marked reduction of remaining DMUs. The majority of decision-maker responses were "B" 

(indicating the true ratio was below the midpoint), guiding the refinement of the feasible weight space and the elimination 

of less preferred DMUs. Through 16 iterations, 16 linear constraints were incorporated, progressively narrowing the 

candidate set and ultimately identifying Tianjin as the unique preference-optimal DMU. The corresponding output 

weights were 𝑢1 = 0.0110, 𝑢2 = 0.0110, and 𝑢3 = 1.1015, and input weights were 𝑣1 = 0.0593, 𝑣2 = 0.0593, 𝑣3 =
0.0593, 𝑣4 = 5.9271, and 𝑣5 = 2.3018, reflecting the relative importance of each indicator according to the decision-

maker’s preferences. Table 3 shows the evolution of weight ratio boundaries and the number of elicitation queries for 

each weight pair. The first three input ratios (𝑣1/𝑣2,𝑣2/𝑣3, 𝑣3/𝑣4) converged to narrow bounds ([0.100, 1.337]) and 

required the maximum number of queries (three each), reflecting higher sensitivity to decision-maker preferences. In 

contrast, the fourth input ratio (𝑣4/𝑣5) and the two output ratios (𝑢1/𝑢2, 𝑢2/𝑢3) maintained wider bounds ([1.337, 2.575] 

for 𝑣4/𝑣5; [0.100, 2.575] for 𝑢1/𝑢2  and  𝑢2/𝑢3) and required fewer queries (two or fewer), indicating greater flexibility 

or less decisive preference information. 
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Iteration Selected Weight 

Pair 

 

midpoint answer Remaining Efficient DMUs 

 

0 (Initial) - - - Tianjin, Hebei, Jiangsu, Shanxi, 

Zhejiang, Beijing, and Jiangxi 

1 𝑣1/𝑣2 5.050 B Tianjin, Hebei, Jiangsu, Shanxi, 

Zhejiang, Beijing, and Jiangxi 

2 𝑣2/𝑣3 5.050 B Tianjin, Hebei, Jiangsu, Shanxi, 

Zhejiang, Beijing, and Jiangxi 

3 𝑣3/𝑣4 5.050 B Tianjin, Hebei, Jiangsu, Shanxi, 

Zhejiang, Beijing, and Jiangxi 

4 𝑣4/𝑣5 5.050 B Tianjin, Hebei, Jiangsu, Shanxi, 

Zhejiang, Beijing, and Jiangxi 

5 𝑢1/𝑢2 5.050 B Tianjin, Hebei, Jiangsu, Shanxi, 

Zhejiang, Beijing, and Jiangxi 

6 𝑢2/𝑢3 5.050 B Tianjin, Hebei, Jiangsu, Zhejiang, 

Beijing, Jiangxi 

7 𝑣1/𝑣2 2.575 B Tianjin, Hebei, Jiangsu, Zhejiang, 

Beijing, Jiangxi 

8 𝑣2/𝑣3 2.575 B Tianjin, Hebei, Jiangsu, Zhejiang, 

Beijing, Jiangxi 

9 𝑣3/𝑣4 2.575 B Tianjin, Hebei, Jiangsu, Zhejiang, 

Beijing, Jiangxi 

10 𝑣4/𝑣5 2.575 B Tianjin, Hebei, Jiangsu, Zhejiang, 

Beijing 

11 𝑢1/𝑢2 2.575 B Tianjin, Hebei, Jiangsu, Beijing 

12 𝑢2/𝑢3 2.575 B Tianjin, Jiangsu, Beijing 

13 𝑣1/𝑣2 1.337 B Tianjin, Jiangsu 

14 𝑣2/𝑣3 1.337 B Tianjin, Jiangsu 

15 𝑣3/𝑣4 1.337 B Tianjin, Jiangsu 

16 𝑣4/𝑣5 1.337 A Tianjin 

 

Table 2. FITradeoff iteration process and DMU elimination sequence 

 

 

Weight ratio Weight ratio bound Question count 

𝑣1/𝑣2 [0.100, 1.337] 3 

𝑣2/𝑣3 [0.100, 1.337] 3 

𝑣3/𝑣4 [0.100, 1.337] 3 

𝑣4/𝑣5 [1.337, 2.575] 3 

𝑢1/𝑢2 [0.100, 2.575] 2 

𝑢2/𝑢3 [0.100, 2.575] 2 

 

Table 3. Evolution of weight ratio bounds and question counts during iterations. 

 

4.2 Analysis and discussion 

 
The iterative process systematically reduced the candidate set of efficient DMUs while preserving both DEA structural 

constraints and decision-maker preferences. The results confirm the FITradeoff-DEA model’s capability to resolve 

multiple-winner scenarios, yielding refined efficiency rankings and identifying a unique preference-optimal DMU, 

Tianjin. Notably, the first three input weight ratios exhibited pronounced convergence, reflected in narrower bounds and 

a higher number of elicitation queries, indicating strong sensitivity to decision-maker preferences. In contrast, the 

remaining input and output ratios maintained wider bounds with fewer queries, suggesting either greater flexibility or less 

decisive preference information. These findings demonstrate how linear constraints derived from preference elicitation 

can be systematically integrated into DEA, allowing simultaneous consideration of technical efficiency and subjective 

priorities. The differential convergence of weight ratios further highlights the algorithm’s ability to prioritize under-

explored or uncertain regions of the weight space, thereby reducing ambiguity among candidate DMUs and refining 
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efficiency assessments. Overall, the results underscore the robustness and practical applicability of the FITradeoff-DEA 

framework in incorporating decision-maker preferences, particularly in scenarios characterized by multiple winners. 

 

5. Conclusion 

 

This study proposes a novel FITradeoff-DEA framework that effectively resolves the "multiple-winner dilemma" in 

traditional DEA by integrating decision-maker preferences through an iterative, weight-space contraction mechanism. 

The model successfully bridges the gap between technical efficiency analysis and value-based decision-making, 

converging multiple efficient DMUs to a single, preference-optimal solution, as validated in our SG case study. 

Notwithstanding its contributions, this study has limitations. The model's effectiveness partially relies on the consistency 

of decision-makers' responses during the interactive elicitation. Moreover, the current framework assumes a deterministic 

environment and does not account for uncertain data. Future research will focus on extending the model to handle data 

uncertainty through fuzzy or stochastic formulations. Exploring its application to other sectors, such as healthcare and 

finance, and integrating it with other advanced preference modelling techniques present promising avenues for further 

development. This study develops an innovative FITradeoff-DEA methodology that systematically addresses the issue of 

multiple efficient DMUs in conventional DEA analysis. By incorporating decision maker preferences through an 

interactive weight constraint mechanism, the framework progressively narrows the feasible weight space to identify the 

preferred efficient unit. The proposed approach effectively bridges technical efficiency measurement with value 

judgment, transforming the DEA frontier from a set of technically optimal DMUs to a single preference-optimal solution. 

The case study on Chinese power companies demonstrates the practical applicability of the method, showing how iterative 

preference elicitation on weight ratios leads to convergence toward a consensus solution. The algorithm's dynamic 

selection of comparison pairs ensures balanced preference exploration across all criteria while maintaining computational 

feasibility. While methodology offers significant advantages, certain limitations warrant attention. The solution quality 

depends on the consistency of preference statements during the interactive process. Additionally, the current 

implementation assumes deterministic data and may benefit from extensions to handle uncertain environments. Future 

research directions include developing robust versions for stochastic data, exploring applications in other regulatory 

contexts, and integrating machine learning techniques to reduce the cognitive burden on decision makers through 

preference prediction. 
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