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Abstract

The evaluation of Smart Grid (SG) efficiency requires a value-based perspective that incorporates decision-maker
preferences alongside technical metrics. This study develops an integrated framework combining Data Envelopment
Analysis (DEA) with the Flexible and Interactive Tradeoff (FITradeoff) method to assess SG efficiency. The approach
begins with standardized DEA to'identify an initial set of efficient DMUs, followed by an iterative preference elicitation
process in which decision-makers provide pairwise comparisons of weight ratios. These preferences are translated into
linear constraints that progressively contract the weight space through a robust optimization procedure with baseline
weight restrictions. The algorithm systematically reduces the efficient set, terminating when a unique DMU is identified
or the candidate set becomes sufficiently narrow. This framework offers a structured, transparent, and mathematically
rigorous tool for identifying. SG alternatives that align with strategic priorities and support preference-driven decision
making.

Keywords: Smart Grids; Data Envelopment Analysis (DEA); Flexible and Interactive Tradeoff (FITradeoff)

1. Introduction

The global energy sector is undergoing a paradigm shift driven by the increasing penetration of renewable energy,
digitalization, and the need for enhanced efficiency in energy management [1], [2], [3], [4]. Renewable energy sources,
such as wind and solar, introduce variability and complexity that challenge traditional centralized grids, requiring
sophisticated evaluation and optimization strategies to ensure reliability and sustainability [1], [2]. In this context, Smart
Grids (SGs) have emerged as a cornerstone of modern energy infrastructure, integrating distributed energy resources,
enabling self-healing capabilities, and optimizing large-scale grid operations [5], [6]. However, assessing the performance




36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING
AND AUTOMATION

of these complex systems remains challenging, as it involves balancing multiple, often conflicting criteria spanning
economic, technical, and environmental dimensions [7]. This multi-faceted nature creates a classic multi-criteria décision-
making (MCDM) problem [8], necessitating frameworks that can holistically capture the integrated efficiency of SGs:to
guide strategic investment and policy decisions. To address the need for multi-dimensional benchmarking, Data
Envelopment Analysis (DEA) [9] has been extensively applied in energy and environmental studies. As a non-parametric
frontier analysis technique, DEA excels at evaluating the relative efficiency of homogeneous Decision-Making Units
(DMUs), such as regional power grids or electricity distribution companies, without requiring a priori weightassignments.
Its application in the power sector is well-established, ranging from assessing the sustainability performance of electric
utilities in the United States [10] to benchmarking the operational efficiency of thermal power plants in China [11].
Nevertheless, the core strength of conventional DEA allowing each DMU to select its most favourable weights to
maximize its own efficiency score, introduces a critical drawback for decision-making. This flexibility often leads to the
"multiple-winner dilemma," where a large number of DMUs are identified as fully efficient [12]. The output is a set of
efficient utilities or regional grids, leaving planners and investors without a definitive; justifiable answer to the
fundamental question: "Which one is the best choice"? This indecisiveness severely limits DEA's utility in contexts
requiring a unique selection, such as competitive funding allocation for large-scale grid modernization or strategic
national infrastructure planning. Integrating preferences into DEA: The quest to incorporate decision-maker preferences
into DEA to overcome its limitations has followed two primary streams, each with significant and well-documented
shortcomings: (1) Direct weight restrictions, including approaches such as assuranceregions [12] and cone-ratios, impose
explicit bounds on the DEA weight space. By constraining the set of feasible weights, these methods can reduce the
number of units classified as efficient, as overly extreme or unrealistic weight combinations are eliminated [ 13]. However,
such restrictions have been widely criticized for their reliance on externally imposed and often subjective limits, which
may not accurately capture the nuanced preferences or value system of the decision maker [14]. Consequently, while
mathematically convenient, these constraints may lack a robust decision-theoretic foundation and do not necessarily
produce solutions that are truly value-optimal [13]. (2) Integration-with MCDM Methods. A more popular approach
hybrids DEA with MCDM techniques. The most common is the AHP-DEA model, frequently applied in energy project
selection, such as in the efficiency assessment of thermal power plants [15]. While decisive, this method inherits AHP's
well-documented flaws: it requires many precise pairwise comparisons at the ratio scale upfront, creating a high cognitive
burden [16]. Furthermore, it suffers from potential rank reversal, and its theoretical foundation is sometimes questioned
for being disconnected from the axioms of multi-attribute value theory (MAVT) [17]. Other integrations, like those with
TOPSIS [18], often determine a static preference structure ex-ante, failing to interactively refine the solution based on the
evolving understanding of the efficient frontier.

In parallel, the field of MCDM has seen advances in more robust preference elicitation methods grounded in MAVT.
The FITradeoff method [19] stands out as a state-of-the-art approach. Its core mechanism involves eliciting holistic
pairwise comparisons of consequences from the DM, from which it infers linear constraints on the ratios of the scale
constants in an additive utility function. Through an iterative process, it progressively reduces the feasible weight space
to identify the most preferred alternative. Owing to its theoretical foundation in MAVT, which relies on more intuitive
trade-off judgments rather than precise ratio-scale comparisons, a growing body of literature positions FITradeoff as a
cognitively more efficient alternative tol AHP, typically requiring fewer and less demanding pairwise inputs from the
decision maker [20], and is theoretically sounder due to its direct foundation in MAVT axioms. Its applications have
grown, including in supply chain selection and maintenance planning [21]. However, a critical analysis of the literature
reveals a stark limitation: its powerful engine for iteratively constraining the weight space has been exclusively applied
in traditional MCDM problems with a pre-defined, limited set of alternatives. Its potential has never been harnessed to
address the fundamental weight flexibility problem in DEA, where the alternatives are the virtually infinite weight vectors
within the DEA feasible region, and the goal is to rank a set of DMUs on an efficiency frontier.

The literature reveals a clear and compelling schism. DEA provides an objective efficiency benchmarking tool but fails
to deliver a unique solution [12], while existing preference-integration methods are either theoretically and cognitively
flawed (AHP) or have not been adapted to the specific mathematical and philosophical context of frontier-based efficiency
analysis. The shortcomings of existing hybrid models highlight the need for a new synthesis that is both methodologically
rigorous and practically decisive. This study bridges this gap by proposing a novel Value-Based Decision Framework that
integrates DEA [9] with the FITradeoff method. Our work is designed to directly counteract the identified limitations and
makes the following contributions. (1) To overcome the indecisiveness of DEA and the arbitrariness of weight restrictions
[14], we develop a model where the weight space is not subjectively bounded but is systematically and rationally reduced
by the DM's own value judgments, elicited through FITradeoff 's trade-off questions. This ensures the final unique
solution is both Pareto-efficient on the frontier and value-aligned, directly solving the "multiple-winner dilemma" [12].
(2) To overcome the cognitive burden and theoretical issues of AHP-DEA integrations [16], [17], we replace AHP with
FITradeoff. Our framework leverages FITradeoff 's cognitively efficient, holistic trade-off questions, significantly easing
the DM's burden and providing a theoretically rigorous foundation for preference incorporation based on the axioms of
MAVT. (3) To unlock the potential of FITradeoff for a new class of problems, we pioneer its application to frontier
analysis. We create a novel, dynamic feedback loop where DEA identifies the efficient frontier and FITradeoff
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interactively refines the weights, converging to a single, preference-optimal SG. This provides a defensible, decision-
centric tool for energy investment and policy, effectively translating the theoretical power of trade-off-based elicitation
into a practical solution for complex efficiency evaluation problems.

The remainder of this paper is organized as follows. Section 2 reviews the theoretical foundations of DEA! and the
FITradeoff method. Section 3 presents the proposed preference-guided DEA framework integrating the FITradeoff
approach. In Section 4, the applicability and effectiveness of the proposed method are demonstrated through an empirical
evaluation of SG efficiency. Finally, Section 5 concludes the paper and discusses potential directions for future research.

2. Theoretical background: DEA and FITradeoff methods

This section delineates the theoretical underpinnings of the integrated evaluation framework proposed in this study. It
commences with a critical exposition of DEA, establishing its role as the foundational engine for efficiency benchmarking.
Subsequently, the discussion pivots to the imperatives for incorporating decision-maker preferences, thereby introducing
the FITradeoff method as the mechanism for value-driven refinement. A nuanced comprehension of these constituent
methodologies is paramount for appreciating their synthesis in the subsequent model development.

2.1 Data envelopment analysis

DEA is a non-parametric performance evaluation technique that utilizes linear programming to assess the relative
efficiency of a set of homogeneous DMUs. Its core premise is to construct a piecewise linear efficiency frontier from the
best-performing DMUs, against which all other units are benchmarked. The seminal CCR model establishes the
foundational linear programming formulation under the assumption of constant returns to scale [9]. For a target DMUo,
the input-oriented model is specified as follows:

N
Max 6, = Z Ur¥ro (M
r=

m
Zi_lvixio =1 )

S m
U Vi — vix;; <0,vVj=1.2,..,n
Zr:l rYrj Zi:l iXij ] 3)
U, 2V 2 VT,i 4)

where x;: Input indicator i; y,.: Output indicator 7; v;, U+ Virtual weights (multipliers) for inputs and outputs, respectively;
6,: Efficiency score of the target DMUo
e Equation (1) maximizes the virtual output of DMUo.
e Equation (2) normalizes the virtual input of DMUo to 1, establishing a common benchmark for comparison.
e Equation (3) ensures that no DMU can achieve an efficiency score greater than 1 under the same set of weights,
thereby defining the efficiency frontier.
e Equation (4) with a non-Archimedean infinitesimal (&) prevent the model from assigning zero weights to any
factor, ensuring all inputs and outputs are considered.

The efficiency score 8, for each DMU is obtained by solving this linear program. A DMU is considered Pareto-
efficient (lying on the frontier) if 6, = 1. A score of 8, < 1 indicates that the DMU is inefficient, meaning there exists a
combination of other DMUs that can produce at least the same level of outputs with fewer inputs. The principal strength
of DEA lies in its ability to.identify an objective efficiency frontier without requiring prior parametric assumptions about
production technology. However, a key limitation is the potential for multiple optimal solutions, the "multiple-winner
dilemma" as each DMU is evaluated using the set of weights most favourable to itself.

2.2 Flexible and Interactive Tradeoff method

The FITradeoff method is an advanced MCDM technique grounded in MAVT [19]. Its core strength lies in its adaptive
preference elicitation process, which progressively refines the decision-maker's preferences through intuitive, holistic
trade-off questions, significantly reducing the cognitive burden associated with methods like AHP that require precise
ratio-scale comparisons. FITradeoff does not require the decision-maker to specify precise criterion weights upfront.
Instead, it employs an iterative questioning procedure where the decision-maker compares pairs of consequence profiles.
These preference statements are translated into linear constraints on the feasible space of criterion weights, systematically
narrowing down the set of possible optimal solutions.

At the heart of FITradeoff's iterative process is a linear programming model designed to test the potential optimality of
an alternative a; given the current set of preference constraints. The linear programming model for testing
alternative a;, is formulated as follows:
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where n: Number of criteria. w;: Weight (scale constant) for criterion i. v;(ay): Value score of alternatives a; under
criterion i (standardized). a;: Other alternatives being compared.
e Equation (5) checks whether there exists any set of weights within the current. feasible region that would make
alternative a; have the highest total value.
e Equation (6) ensures that under the same set of weights, the total value of a is at least as high as that of every
other alternative.
e Equation (7) or (8) is the core of the interaction, progressively shrinking the feasible weight space to reflect the
decision maker's nuanced value system.
e Equations (9) and (10) ensure the weights form a valid, positive, and normalized set.

If the LP is feasible, alternative a; remains a candidate for the most preferred solution. If it is infeasible, a; is
eliminated. The method then intelligently selects the next most informative trade-off question based on the updated
constraints. This process iterates, creating a dynamic feedback loop that rapidly converges to a single, value-
optimal alternative. The power of FITradeoff lies in transforming the search for the best alternative from a static, all-
information-required-a-priori judgment into a dynamic, value-driven, and highly efficient search process, making it
uniquely suited for complex decision scenarios.

3. Preference-guided DEA with FITradeoff method

In this section, we propose a novel hybrid framework, the FITradeoff-DEA model, which integrates interactive
preference information from MCDM. By iteratively incorporating these preferences to constrain the feasible weight space,
the model converges multiple efficient DMUs to-a single, preference-driven optimal solution, thereby shifting the
evaluation focus from purely technical efficiency to value-based decision-making. The model operates on an iterative
principle of gradually narrowing the DEA weight space based on decision-maker preferences. Initially, all DMUs are
evaluated without preference constraints, potentially resulting in multiple efficient units. Through an interactive process,
preference information is elicited and converted into linear constraints, progressively reducing the feasible region. The
iteration continues until only one DMU achieves the maximum efficiency score under the given preferences, representing
the unique preference-driven optimal solution.

The following notations and definitions are introduced for clarity and consistency throughout the subsequent model
formulation.

e DMUs: Consider a set of n homogeneous DMUs, denoted as DMU; (j = 1,2, ..., n).
e Input and Output Indicators: x;; (i = 1,2, ..., m) represents the amount of input i for DMU; . y,; (r =1,2,...,5)
represent the amount of output r for DMU; .
e Weight Variables: v; is the weight assigned to input i; 9, is the weight assigned to output r.
e Efficiency Score: For a given weight combination (v, 9), the efficiency of DMU; is 6; = Y5_1 9,y .
The following Linear Programming (LP) model is formulated for evaluating a target unit DM U, :

Max 6, = Zf‘:lury‘rk (11)
m

Zizlvixik =1 (12)
S m .

Zrzluryrj —Zizlvixij <0,vj=12,..,n (13)

e 1p] 2= € [1,p]

w0 (14)
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where (12) is the DEA normalization constraint. (13) is the DEA envelopment constraints. (14) are the weight ratio bounds.
(15) and (16) are preference constraint set, a set of linear inequalities incrementally incorporated during the interactive
process, C= {all preference information from decision maker}: output vs. output: u, = k! - u,,, implies output r is
deemed more important than ki times output r + 1 or u, < ki’ - u,.,, implies output r is deemed less important than
ki times output r + 1; input vs. input: v; = k3 - v;,, implies input i is deemed more important than k; times input i +
1or v; <kj - v;,, implies input i is deemed less important than k3 times input i + 1. (17).is the non-negativity
constraints, a minimal positive number used to enforce strict positivity of weights.
The model executes through a dynamic, interactive, and iterative procedure, as shown in Algorithm 1.

Step 1: Problem initialization and data standardization
Step 1.1 Load input-output data
Inputs: x;; (i =1,2,...,m) represents the amount of input i for DMU; .
Outputs: y,; (r = 1,2,...,s) represent the amount of output r for DMU;
Step 1.2 Data standardization process
For each indicator (input x;;or output y, ;), the standardized value is calculated as:

z—min (z)

Z =01+09 (18)

max (z)—min (z)
[0.1,1] represents the original value of any input or output variable.

Step 1.3 Set baseline weight constraints
Minimum weight: v;,u, > €
Weight ratio bounds:

vi

Input weights € [Lyound> Upouna] for i = 1,2..., m—1 (19)

Vit1

Input weights uu_r € [Lpound> Upouna] for r=1,2 ...,s — 1 (20)
T+1

Step 2: Initial DEA efficiency calculation
Step 2.1 Solve multiplier DEA model for.each DMU j by (11)-(17).
Step 2.2 Identify initial efficiency frontier.
E' = {DMU; | 6; = 0.999}
Record initial efficiency scores 9]-1 for all DMUs on the frontier.
Step 3: FITradeoff interactive process
While | E¥ |> 1 and iteration < max iteration do:
Step 3.1 Select weight comparison pair.
In each iteration, the algorithm selects one weight ratio from the set of candidate pairs P ={v; /v;,1]i = 1,2..., m —
1} U {u,/u,41|r =1,2 ..2ys = 1} according to a two-level criterion:
Primary criterion: the pair with the smallest number of prior elicitation questions is preferred.
Secondary criterion: among pairs with equal numbers of prior questions, the pair with the largest current range
(Upound — Lvound) 1s selected, as it represents the greatest remaining uncertainty.
Only pairs with a current range exceeding a predefined threshold (e.g., 0.05) are considered for selection.
Step 3.2 Generate comparison question.

Lpound +*Ubound (21)

midpoint = >

is the ration for the selected paired of weights.
Step 3.3 Simulate DM response.

Computing true ratio from preset weights

Response:
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I if|true,q;ion —midpoint| < 0.001
response =< B if truepgtion < midpoint (22)
A if truepqeion > midpoint

Step 3.4 Update weight boundaries

I Lpouna = Upouna = midpoint
Case response = {B Upoung = midpoint 23)
A Lpouna = midpoint

Step 3.5 Add linear constraints to constraint set C.
If the response is not I, add corresponding linear inequality:
For v; /v;,1: v; — midpoint - v;,1 = 0if (A) or < 0 if (B)
For u,/u,41: u, —midpoint - u,,; = 0 if (A) or < 0 if (B)
This inequality is then incorporated into the set of preference constraints C.
Step 4: Constrained re-evaluation of Efficiency
Step 4.1 Solve constrained DEA for each DMU in E¥ with constraints C.
Step 4.2 Update efficiency frontier

E**1 = (DMU; € E* | 6; = 0.999} (24)

Step 4.3 Handle degenerate cases
If | E¥*1 |= 0, revert last constraint, restore previous weight boundaries, set E k+1 = Fk
Step 5: Convergence check and termination
Step 5.1 Termination conditions
If| EF*1 = 1:
Final optimal DMU = unique member of E¥*1
Output: Found preference-optimal solution— terminate
Else if | E¥*! |> 1 and maximum of iterations reached:
Output: Multiple candidate DMUSs remain
Conduct cross-efficiency analysis — terminate
Else:
k = k + 1— return to Step 3
Step 6: Result analysis and recommendation
Step 6.1 Calculate final efficiency rankings
Compute 6;for all DMUs under final constraint set C
Step 6.2 Output recommendation
If unique optimal DMU, final recommendation DMU can be considered as the optimal choice under preferences.

Algorithm 1. FITradeoff -DEA preference elicitation

4. Case study: application to power company efficiency evaluation

To empirically evaluate the effectiveness of the proposed FITradeoff -DEA model, we perform numerical analysis
using a widely recognized dataset in SG efficiency studies. Specifically, we employ the input and output indicators of 15
power companies originally reported by Yu et al. [22]. This dataset is well suited to our analysis as it is constructed under
the EPRI framework and sourced from the Transportation Monitoring Centre of the State Grid Corporation of China-an
authoritative and reliable data provider. Building upon this established dataset allows for a direct and consistent
comparison with prior research outcomes, thereby underscoring the distinctive contributions of our proposed approach.

Input Output
Power Power Infrastructure | Technological | Marketing | Information Total Electricity | Purchase
company grid investment investment investment | technology profit sales price
investment (10* yuan) (10* yuan) (10* yuan) (10* yuan) ao* (10° kwh) (Yuan/
(10% yuan) yuan) 103 kwh)
Fujian 1260422 1158031 69000 153615 17139 239868 1397.80 214.16
Tianjin 620911 547966 22845 111471 12491 95404 6078.01 237.29




36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING

AND AUTOMATION

Hebei 912164 850828 40977 118861 13541 89700 13908.7 210.08
Jiangsu 2977447 2765963 121570 388372 17518 686197 38488.3 152.91
Shandong | 2804030 2615571 107399 283868 18150 595476 | 32978.29 123.09
Shanghai 1079683 628907 128095 153731 29877 110202 11174.96 224.62
Shanxi 926989 807855 46466 185648 13989 88613 16295.99 126.32
Zhejiang 2290509 2134974 99994 239306 18355 588559 | 28026.15 217.98
Anhui 1125446 961436 107345 126241 15914 75821 1250.51 191.20
Beijing 643251 594054 28141 132705 14041 152093 7920.60 206.48
Hubei 1136556 1008999 53240 171112 17442 71546 1190.21 196.62
Hunan 891914 776652 45236 155489 16123 71723 961.89 200.39
Henan 1387564 1258219 87000 122140 18701 126149 2399.22 112.26
Jiangxi 877297 800046 22470 102954 16176 65327 730.40 252.21
Sichuan 2838232 2592478 157049 181748 19244 99523 180.40 159.64

Table 1. The dataset for SG efficiency evaluation

The FITradeoff-DEA methodology was implemented following the algorithmic procedure described in Section 3, with
parameters configured to ensure both robustness and practical applicability. Key settings included: weight ratio bounds
of 0.01-100 for all input (v;/v;,,) and output (u,/u,,,) comparisons, providing reasonable proportionality while
allowing flexibility; a minimum weight threshold of 10 to prevent trivial solutions; a:convergence threshold of 0.05 for
weight ranges, excluding sufficiently determined weight pairs from further elicitation; an efficiency frontier threshold of
0 > 0.999 to account for numerical precision; and a maximum of 25 iterations to balance solution quality and
computational effort. These settings were informed by preliminary sensitivity analyses and are consistent with established
practices in DEA and MCDM literature.

All input and output indicators were first standardized using min-max normalization to map values onto a [0.1, 1] scale,
ensuring comparability across heterogeneous units. Initial DEA evaluation identified multiple efficient DMUs along the
production frontier, confirming the presence of the "multiple-winner dilemma" that motivates the preference-based
approach. The subsequent FITradeoff interactive preference elicitation involved six weight ratio comparisons (v; /v,
v, /Vs3, V3/v,, V4 /s for inputs u, /u,, u,/u; for outputs). Simulated decision-maker responses, derived from preset
preference weights, were used iteratively to refine the feasible weight space by adding linear constraints until convergence
criteria were met.

4.1 Iteration Process and Results

The FITradeoff-DEA methodology produced a systematic convergence pattern that effectively resolved the initial
multiple-winner dilemma. Table 2 summarizes the iterative DMU elimination process. Initially, seven DMUs: Tianjin,
Hebei, Jiangsu, Shanxi, Zhejiang, Beijing,‘and Jiangxi were identified on the production frontier with perfect efficiency
scores (6 = 1.000). As iterative weight ratio .comparisons were applied, the candidate set was progressively narrowed.
Early iterations exerted limited impact onthe overall candidate set, whereas later iterations particularly from iteration 10
onwards resulted in a marked reduction of remaining DMUs. The majority of decision-maker responses were "B"
(indicating the true ratio was below the midpoint), guiding the refinement of the feasible weight space and the elimination
of less preferred DMUSs. Through 16 iterations, 16 linear constraints were incorporated, progressively narrowing the
candidate set and ultimately identifying Tianjin as the unique preference-optimal DMU. The corresponding output
weights were u; = 0.0110, u, = 0.0110, and u; = 1.1015, and input weights were v; = 0.0593, v, = 0.0593, v; =
0.0593, v, = 5.9271, and v¢ = 2.3018, reflecting the relative importance of each indicator according to the decision-
maker’s preferences. Table 3 shows the evolution of weight ratio boundaries and the number of elicitation queries for
each weight pair. The first three input ratios (v, /v,,v, /v, v3/v,) converged to narrow bounds ([0.100, 1.337]) and
required the maximum number of queries (three each), reflecting higher sensitivity to decision-maker preferences. In
contrast, the fourth input ratio (v,/vs) and the two output ratios (u, /u,, u,/u;) maintained wider bounds ([1.337, 2.575]
for v, /vs; [0.100, 2.575] for u, /u, and u,/us) and required fewer queries (two or fewer), indicating greater flexibility
or less decisive preference information.
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Iteration Selected Weight midpoint answer Remaining Efficient DMUs
Pair
0 (Initial) - - - Tianjin, Hebei, Jiangsu, Shanxi,
Zhejiang, Beijing, and Jiangxi
1 v/, 5.050 B Tianjin, Hebei, Jiangsu, Shanxi,
Zhejiang, Beijing, and Jiangxi
2 v, /v 5.050 B Tianjin, Hebei, Jiangsu, Shanxi,
Zhejiang, Beijing, and Jiangxi
3 V3 /U, 5.050 B Tianjin, Hebei; Jiangsu, Shanxi,
Zhejiang, Beijing, and Jiangxi
4 v,/ Vs 5.050 B Tianjin, Hebei, Jiangsu, Shanxi,
Zhejiang, Beijing, and Jiangxi
5 U, /u, 5.050 B Tianjin, Hebei, Jiangsu, Shanxi,
Zhejiang, Beijing, and Jiangxi
6 U,/ us 5.050 B Tianjin, Hebei, Jiangsu, Zhejiang,
Beijing, Jiangxi
7 v, /0, 2.575 B Tianjin, Hebei, Jiangsu, Zhejiang,
Beijing, Jiangxi
8 U,y /U3 2.575 B Tianjin, Hebei, Jiangsu, Zhejiang,
Beijing, Jiangxi
9 U3/, 2.575 B Tianjin, Hebei, Jiangsu, Zhejiang,
Beijing, Jiangxi
10 U/ Vs 2.575 B Tianjin, Hebei, Jiangsu, Zhejiang,
Beijing
11 u/u, 2.575 B Tianjin, Hebeli, Jiangsu, Beijing
12 U, /us; 2.575 B Tianjin, Jiangsu, Beijing
13 v1/v, 1.337 B Tianjin, Jiangsu
14 v, /U3 1.337 B Tianjin, Jiangsu
15 V3 /Uy 1.337 B Tianjin, Jiangsu
16 Vy/ Vs 1.337 A Tianjin
Table 2. FITradeoff iteration process and DMU elimination sequence
Weight ratio Weight ratio bound Question count
v, /v, [0.100, 1.337] 3
U,y /U3 [0.100, 1.337] 3
V3 /0, [0.100, 1.337] 3
U/ Vs [1.337,2.575] 3
U /u, [0.100, 2.575] 2
U, /us [0.100, 2.575] 2

Table 3. Evolution of weight ratio bounds and question counts during iterations.

4.2 Analysis and discussion

The iterative process systematically reduced the candidate set of efficient DMUs while preserving both DEA structural
constraints and decision-maker preferences. The results confirm the FITradeoff-DEA model’s capability to resolve
multiple-winner scenarios, yielding refined efficiency rankings and identifying a unique preference-optimal DMU,
Tianjin. Notably; the first three input weight ratios exhibited pronounced convergence, reflected in narrower bounds and
a highernumber of elicitation queries, indicating strong sensitivity to decision-maker preferences. In contrast, the
remaining input and output ratios maintained wider bounds with fewer queries, suggesting either greater flexibility or less
decisive preference information. These findings demonstrate how linear constraints derived from preference elicitation
can be systematically integrated into DEA, allowing simultaneous consideration of technical efficiency and subjective
priorities. The differential convergence of weight ratios further highlights the algorithm’s ability to prioritize under-
explored or uncertain regions of the weight space, thereby reducing ambiguity among candidate DMUs and refining
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efficiency assessments. Overall, the results underscore the robustness and practical applicability of the FITradeoff-DEA
framework in incorporating decision-maker preferences, particularly in scenarios characterized by multiple winners.

5. Conclusion

This study proposes a novel FITradeoff-DEA framework that effectively resolves the "multiple-winner dilemma" in
traditional DEA by integrating decision-maker preferences through an iterative, weight-space contraction-mechanism.
The model successfully bridges the gap between technical efficiency analysis and value-based decision-making,
converging multiple efficient DMUs to a single, preference-optimal solution, as validated in our SG case study.
Notwithstanding its contributions, this study has limitations. The model's effectiveness partially relies on the consistency
of decision-makers' responses during the interactive elicitation. Moreover, the current framework assumes a deterministic
environment and does not account for uncertain data. Future research will focus on extending the model to handle data
uncertainty through fuzzy or stochastic formulations. Exploring its application to other sectors, such as healthcare and
finance, and integrating it with other advanced preference modelling techniques present promising-avenues for further
development. This study develops an innovative FITradeoff-DEA methodology that systematically addresses the issue of
multiple efficient DMUs in conventional DEA analysis. By incorporating decision maker preferences through an
interactive weight constraint mechanism, the framework progressively narrows the feasible weight space to identify the
preferred efficient unit. The proposed approach effectively bridges technical efficiency measurement with value
judgment, transforming the DEA frontier from a set of technically optimal DMUs to a single preference-optimal solution.
The case study on Chinese power companies demonstrates the practical applicability of the method, showing how iterative
preference elicitation on weight ratios leads to convergence toward a consensus solution. The algorithm's dynamic
selection of comparison pairs ensures balanced preference exploration across-all criteria while maintaining computational
feasibility. While methodology offers significant advantages, certain limitations warrant attention. The solution quality
depends on the consistency of preference statements during the. interactive process. Additionally, the current
implementation assumes deterministic data and may benefit from extensions to handle uncertain environments. Future
research directions include developing robust versions for stochastic data, exploring applications in other regulatory
contexts, and integrating machine learning techniques to reduce the cognitive burden on decision makers through
preference prediction.
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