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Abstract 

 

In-hand manipulation is a key benchmark for dexterous robotic control, especially in bionic hands where mechanical 

simplicity competes with functional complexity. This work uses Isaac Sim and reinforcement learning (RL) to evaluate 

the dexterity of a custom bionic hand trained to manipulate a cube in 3D space. The goal is to assess whether the design 

provides sufficient degrees of freedom (DoF) to complete the task under domain randomization, enabling potential zero-

shot sim-to-real transfer. Despite high-fidelity simulation and robust policy optimization, the bionic hand failed to perform 

the task, suggesting that limitations stem from its mechanical design rather than learning or modeling errors. To verify 

this, the same setup was tested on the Shadow Hand, which succeeded. Three bionic hand variants were then evaluated: 

the baseline, one with extended supination, and one with an added wrist joint. Their performance was compared to the 

24-DoF Shadow Hand. The modified designs showed clear improvement, isolating the effects of joint range and 

placement. Results indicate that moderate increases in motion range or adding even a single DoF can substantially enhance 

manipulation ability, emphasizing the importance of joint-level design in achieving dexterous behavior in bionic and 

robotic hands. 
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1. Introduction 

 

Modern robotic systems are typically designed with a specific use case in mind and deployed in controlled, structured 

environments. While this design has enabled reliable performance in industrial automation and service robotics, it shows 

clear limitations in human-centric settings, which are characterized by variability, uncertainty, and unstructured 

interactions [1] [2]. To address this challenge, research has increasingly turned toward humanoid and bionic robotic 

systems that can operate in environments originally built for humans.  

Within this area of research, dexterous robotic hands and arms represent a particularly promising but difficult path. A 

bionic arm with multiple degrees of freedom can, in principle, replicate human-like manipulation and enable a wide range 

of tasks. However, the very complexity that makes such systems versatile also creates challenges. High-dimensional 

control spaces, nonlinear joint couplings, and intricate contact dynamics make classical control methods difficult to apply 
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effectively [2]. As a result, controllability and robustness remain major bottlenecks in the deployment of dexterous robotic 

systems [1].  

Previous attempts to solve the complex nature of high dimensional action spaces required the use of model predictive 

training or contact-invariant optimization [3] [4]. The inherent issue with in-hand manipulation stems most likely not 

from the action space alone but also the observation space, including contact points [5].  

In recent years, reinforcement learning (RL) has emerged as a compelling alternative for solving these challenges [2], 

[6]. Unlike traditional controllers, RL agents can learn policies directly from interaction data, making them well-suited 

for tasks with complex dynamics such as in-hand object manipulation. Landmark studies have demonstrated that RL can 

control high-degree-of-freedom robotic hands to perform nontrivial manipulation tasks in simulation and, with the help 

of techniques like domain randomization, even transfer these skills to real-world hardware [7]. These advances suggest 

that simulation-based RL provides a viable pathway for training dexterous bionic arms to achieve robust, human-like 

manipulation in diverse environments. 

 

2. State of the Art 

 

Dexterous in-hand manipulation requires coordinated control across many coupled degrees of freedom. In practice, 

however, many robotic and prosthetic hands provide only a small number of actuated joints. This mismatch forces 

controllers to achieve outcomes that normally require complex hands with only simplified mechanisms. The following 

overview highlights how research has approached this problem through contact-based planning, learning-based control, 

the exploitation of external forces, and design strategies that rely on either compliance or rigid linkages. 

Early approaches to dexterous manipulation treated it as a problem of motion planning with explicit contact reasoning. 

Contact invariant optimization planned trajectories in combination with contact events, which produced finger gaits and 

regrasp motions in simulation [4], [5]. Predictive control schemes similarly synthesized rapid behaviors for dynamic 

manipulation tasks [3]. These methods established as an important foundation that, with accurate models of friction and 

contact, coordinated motions could be planned even when actuation was limited. However, in real scenarios such 

approaches were often not sufficient, since minor errors in modeling or friction parameters could destabilize the resulting 

plans [1], [2]. For hands with few actuators, the dependence on subtle contact exploitation made the gap between 

simulation and reality especially significant. 

This behavior that emerged from these limitations is referred to as extrinsic dexterity. Instead of relying only on the 

internal joints of the hand, a controller can make use of gravity, inertia, and environmental contact surfaces to reorient an 

object [8]. Some studies demonstrated how external forces can increase the set of reachable object configurations with 

minimal finger motion [8]. More recently, learning-based methods rediscovered these principles, with policies that 

pressed or rolled objects against planes or the palm to create rotations that could not be commanded directly [9], [10]. 

This work makes clear how a simple hand can still perform meaningful reorientation by creating contact situations that 

substitute for missing degrees of freedom. Parameterized manipulation primitives now provide a structured way to 

represent such strategies [11]. 

The rise of deep RL introduced a powerful alternative to analytic control. With appropriate reward design and 

exploration, RL agents discovered non-intuitive solutions for in-hand reorientation tasks [2]. A landmark example is the 

OpenAI Shadow Hand project, in which a policy optimized with Proximal Policy Optimization (PPO) [6] successfully 

reoriented a cube and later solved the Rubik’s Cube [7]. Success depended on extensive domain randomization, which 

randomized masses, frictions, and joint gains to improve robustness [12]. Later work extended this pipeline to more agile 

behaviors on the same platform, showing that realistic simulation combined with massive randomization can enable direct 

transfer to hardware [13]. Theoretical analyses now provide guarantees that domain randomization can narrow the gap 

between simulated and real environments under broad conditions, and that memory-dependent policies can further 

stabilize performance when dynamics vary [14]. 

Although many of these advances were demonstrated on hands with many actuated joints, the same principles can be 

applied to simpler devices. Tendon-driven designs with rolling contacts, for example, provide natural compliance that 

makes it easier for policies to exploit contact geometry [15]. At the opposite end, dynamic two-handed throw-and-catch 

experiments highlight how momentum and timing can replace internal joints with well-orchestrated external effects [16]. 

Recent studies also demonstrate end-to-end visual policies for humanoid manipulation tasks, showing that learning 

directly from camera observations can reduce the mismatch between simulation and sensor inputs [17]. Other work 

combines RL with demonstration-led curricula, which improves stability during training without altering the mechanical 

complexity of the platform [18]. 

The physical mechanism itself ultimately determines what strategies are possible. Tendon-driven fingers allow a form 

of compliant following that can be approximated by proportional–derivative joint controllers, where dependent joints 

naturally lag behind and adjust smoothly. By contrast, rod-coupled or gear-coupled mechanisms behave as stiff kinematic 

loops. These must be modeled with extremely high stiffness values and minimal damping, and backlash needs to be 

represented explicitly to avoid unrealistic rigid couplings. Studies that successfully transferred from simulation to real 

Shadow Hands emphasize the importance of aligning simulator contact models, joint limits, and controller gains with the 

actual mechanism [13]. 

In summary, low-actuator hands can still achieve tasks that normally require complex devices, provided that they 

exploit extrinsic contacts, are trained under diverse simulation conditions, and are modeled with accurate representations 
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of their mechanical couplings. High-actuator hands remain the most capable, but targeted design choices such as 

compliant tendons or fast global wrist joints can raise the capabilities of simpler hands. This understanding motivates the 

following study, in which a rod-coupled bionic hand with limited joints is evaluated against a high-degree Shadow Hand 

baseline. The simulations explicitly account for stiff linkage behavior and backlash, and training is performed with PPO 

in Isaac Sim with extensive domain randomization following established practice. 

 

3. Materials and Methodes 

 

In this work, the Bionic Arm developed in [19] was evaluated in the in-hand cube manipulation task and compared 

against the Shadow Hand [20]. An altered version of the Bionic Arm was also tested, incorporating an additional axis in 

the wrist. To improve computational efficiency during simulation, the CAD models of both versions of the Bionic Arm 

were simplified. Fasteners such as screws, nuts, and bolts were intentionally excluded. The outer geometry, particularly 

the surfaces that may come into contact with the cube, was preserved to avoid altering interaction behavior. Regions 

previously occupied by washers were filled to prevent edge gaps that could catch the cube and lead to non-transferable 

behaviors. Internal cavities not involved in contacts were also filled where appropriate. One simplification that may 

influence sim-to-real transfer is the exclusion of the metallic linkage rods that couple the distal phalanx as depicted in 

Fig. 1. This rod can collide with the cube, since it is mounted on the inside of each finger. 

 

 
 

Fig. 1. teel linkages (yellow) connecting the distant phalanx with the driven middle phalanx. 

 

It was left out because it forms a closed-loop mechanism that the Unified Robot Description Format (URDF) does not 

natively support. URDF is an XML-based description language widely used in robotics to specify a robot’s kinematic and 

dynamic properties, including joints, links, and sensor configurations. However, URDF supports only tree-structured 

kinematic chains and does not represent closed-loop mechanisms such as the four-bar linkage in the Bionic Hand. As a 

workaround, URDF provides the mimic joint feature. In this approach, one joint is defined as dependent on another, its 

position expressed as a linear function of the parent joint’s position, as shown in Equation 1. 

 

 𝑞𝑑𝑖𝑠𝑡𝑎𝑙 =  𝛼𝑞𝑚𝑖𝑑𝑑𝑙𝑒 +  𝛽 (1) 

 

Where α is a scaling factor and β an offset. Since four-bar linkages in robotic fingers constrain the distal joint to a single 

degree of freedom (DoF) [21], and the motion of the distal phalanx in the Bionic Arm is a linear function of the middle 

phalanx, the mimic joint feature can be used as an approximation. In this implementation, the distal phalanx joints were 

set to mimic the middle phalanx joints with the appropriate scaling factor, effectively reproducing the closed-loop motion 

in simulation. The assembly can then be exported from SolidWorks using the ROS add-on sw_urdf_exporter. The 

resulting URDF was then imported as a Universal Scene Description (USD) into NVIDIA Isaac Sim for simulation. 

Inside Isaac Sim, further properties of the joints and linkages can be configured. Since the connection to the fingertips 

in the Bionic Hand prototype is established with a stiff metal rod instead of compliant tendons (Fig. 1), the mimic-follow 

behavior requires a more detailed description. Behind the mimic tag, Isaac Sim implements a standard Proportional–

Derivative (PD) controller, where the stiffness parameter corresponds to the proportional gain (P-gain) and the damping 

parameter corresponds to the derivative gain (D-gain) [22]. This formulation is appropriate for tendon-driven linkages, as 

it allows the dependent joint to give in and lag slightly behind during movement. Since most dexterous robotic hands, 

such as the Shadow Hand, employ tendon-driven actuation, the PD-based mimic joint is typically sufficient [7]. 

In contrast, the Bionic Hand prototype uses a rigid rod, linear motor mechanism, where each finger is directly actuated 

along a single axis. For such stiff kinematics, a conventional PD controller is inadequate, since the mechanism requires 

an instantaneous response of the driven linkage. To approximate rigid coupling in simulation, the stiffness must be set to 

a very high (near-infinite) value, while damping is set to zero. This ensures that mimic joints behave as stiff connections, 

causing the fingertips to follow the driving joint without delay. 

However, to enable zero-shot transfer from simulation to the real world, it is also necessary to simulate the backlash 

introduced by the drive mechanism as accurately as possible. In this case, a Proportional–Threshold (PT) controller would 
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be more appropriate than a PD controller [23], [24]. A PT controller is a type of non-linear control system. Unlike a 

standard proportional controller, that applies a corrective force directly proportional to the position error, a PT controller 

incorporates a dead zone (threshold). Within this dead zone, the controller output remains zero, meaning no corrective 

action is applied. Only when the error exceeds this predefined threshold does the controller activate, applying a force 

proportional to the remaining error [25]. To overcome this issue, empirical values for the P- and D-gains were set to 

approximate the backlash observed on each finger. 

 

3.1 Reinforcement Learning Configuration 

 

Isaac Sim was used with the PhysX backend to simulate the physics in the environment, while Isaac Lab was employed 

to manage the RL tasks. For training, the RL library skrl [26] was used together with a PPO agent [6]. 

The only difference in training between the Shadow Hand and the Bionic Hand was the size and depth of the neural 

network policy. The Shadow Hand was trained with a four-layer fully connected network of sizes [512, 512, 256, 128], 

whereas the Bionic Hand employed a deeper five-layer network of sizes [1024, 1024, 512, 256, 128]. The larger 

architecture was chosen to better handle the increased complexity of the Bionic Hand, which included nonlinearities and 

backlash effects in its joints, making the policy optimization problem more challenging [27], [28]. 

The observation space consisted of 120 dimensions, including joint positions and velocities, the cube’s position, 

orientation, and velocity, the goal position and orientation, fingertip positions and velocities, as well as the previous action 

values. The action space, in contrast, was limited to seven dimensions, corresponding to the commanded positions of each 

actuated DoF. A summary of the observation and action space is provided in Table 1. 

 

Space Description 

Observations (120D) Joint positions and velocities; 

 Cube position, orientation, velocity; 

 Goal position and orientation; 

 Fingertip positions and velocities; 

 Previous actions 

Actions (7D) Target positions for each DoF 

 

Table 1. Observation and Action Space Configuration 

 

Each training run consisted of 80,000 simulation steps with 8192 parallel environments. To promote robustness and enable 

zero-shot transfer from simulation to the real world, domain randomization was applied [12], [29]–[31]. For each 

environment instance, random values were sampled for the following parameters: 

 

• static and dynamic friction between cube and hand, 

• joint stiffness and damping values, 

• upper and lower joint limits, 

• mass distribution of the cube, 

• gravity vector applied to the scene. 

 

Parameter Value 

Distance reward scale −10.0 

Rotation reward scale 1.0 

Action penalty scale −0.001 

Goal bonus 250 

Success tolerance (rad) 0.05 

Fall penalty 0 

Fall distance 0.24 

Velocity obs. scale 0.2 

Force/torque obs. scale 10.0 

Averaging factor (α) 0.1 

Action moving average 0.3 

 

Table 2. Reward Function Parameters 
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The reward function was designed to encourage successful object manipulation. The most important components were: 

 

• Rotation reward: encouraging alignment between cube and goal orientation. 

• Action penalty: discouraging unnecessarily large or unstable joint actions. 

• Goal bonus: rewarding successful alignment within tolerance. 

 

Additional shaping terms (e.g., velocity scaling, force/torque scaling, and averaging factors) were tuned empirically to 

balance stability and exploration. The key reward scaling parameters are summarized in Table 2. 

 

4. Results 

 

To evaluate the performance of each agent, several parameters were tracked across episodes to compare the different 

configurations. In particular, the number of successful trials and dropped episodes was recorded for each run. Each 

episode consisted of 600 steps and was terminated either when the object was dropped or when the maximum step count 

was reached. Episodes that did not result in a success or a drop were classified as other. 

A distinction was made when classifying cases in which both the success and drop conditions were triggered. For the 

analysis of episode outcomes, any episode in which the cube was successfully reoriented at least once was counted as a 

success. In contrast, when evaluating reward values or episode length, such cases were labeled as drops. In addition, the 

rotational error was computed and monitored throughout each episode, along with the corresponding return values. 

To ensure stability of the simulation and avoid introducing artifacts, the training of the Bionic Hand in its standard 

configuration, as presented in [19], was conducted in stages. The process began with the kinematic model and joint limits, 

while actuator dynamics were left unconstrained. In the next step, stiffness and damping values were explicitly defined 

for the joints. Subsequently, joint velocity limits were enforced to better approximate the physical system. Finally, 

simulations were repeated with backlash enabled on the joints and domain randomization applied to capture additional 

mechanical characteristics of the real hardware. 

With this staged approach, the standard configuration was able to sequentially solve the cube rotation task. However, 

once actuator speed limits were introduced, the same level of performance was no longer achievable. It was observed that 

the agent initially relied on rapid, momentum-based reorientation motions, a strategy that became infeasible once actuator 

velocity limits were enforced. 

Training the 7-DoF Bionic Hand with all limitations and domain randomization enabled proved unsuccessful without 

further modifications. The system appeared to lack the ability to maneuver the cube into more favorable positions within 

the workspace of each finger, which prevented complex reorientations. As a result, the agent became trapped in a reward 

plateau. Instead of attempting reorientation, which often led to dropping the cube, it learned to balance the cube on the 

palm to maximize reward. 

To address this, the wrist rotation was extended to include an additional 90° of supination beyond the typical human 

anatomical range, resulting in a full 270° range of motion. This modification was motivated by observations from training 

the 8-DoF version of the Bionic Hand that also included dorsiflexion and palmar flexion of the wrist. In that case, although 

the added DoFs enabled more varied strategies, the limited supination range still caused difficulties: depending on the 

randomized initial pose and velocity, the cube often rolled toward the hypothenar region, from which recovery was 

impossible. Consequently, the agent adopted an alternative strategy of balancing the cube on the back of the thumb, where 

the available 90° of supination could be exploited to stabilize, recover, and even reorient the cube. 

 

4.1 Bionic Hand (7-DoF) 

 

The Bionic Hand was also evaluated under full physical constraints, including domain randomization, joint backlash, and 

velocity limits. Under these conditions, the task could not be solved. In rare cases, when the randomized initial state was 

favorable, the hand was able to balance the cube on its palm. However, complex reorientation maneuvers were not 

attempted, as the limited actuation strategies provided few options for moving the cube into configurations that enabled 

further manipulation. 

As illustrated in Figure 2, the system converged to a steady state after approximately 80,000 training timesteps, with 

no further manipulations attempted. Based on these results, it can be concluded that the initialization of the cube led to 

frequent early drops before the hand could react. This effect was reinforced by the velocity limits and by initializing the 

robotic hand in a random configuration. Without the additional supination range, the palm’s orientation was often 

misaligned with the cube’s initial dropping velocity vector, causing deflections on impact and leading to premature 

episode termination.  
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Fig. 2: Steady state of the 7-DoF Bionic Hand after 

80,000 timesteps of training, where the cube remains 

balanced on the palm without further manipulation. 

 

 
 

Fig. 3: Outcome distribution for 200 evaluation 

episodes of the 7-DoF Bionic Hand under full constraints. 

 

Figure 3 shows that in 80 out of 200 episodes the cube remained balanced on the palm. Of the 200 episodes, eight were 

registered as successful completions. However, seven of these eight cases were immediately followed by a drop, 

indicating that they were likely favorable initializations rather than genuine solves. This interpretation is supported by the 

time-to-success distributions in Figure 4, where most successes occurred unrealistically early. Only one episode reached 

completion at around 100 steps, which aligns more closely with the mean time-to-success observed in the extended 

supination configuration. 

Overall, these results demonstrate that without the additional supination range, the Bionic Hand was unable to reliably 

achieve stable reorientation. 

 

4.2 Bionic Hand (7-DoF with Extended Supination) 

 

The reorientation strategy of the 7-DoF Bionic Hand with Extended Supination relied strongly on extrinsic dexterity [8]–

[10]. Whenever possible, the cube was allowed to rest on the palm while the distal phalanx of the thumb was positioned 

against the proximal phalanx of either the middle or index finger, creating a confined space that prevented the 

 

  
Fig. 4: Comparison of time-to-success distributions. Left: 7-DoF Bionic Hand under full constraints.  

Right: 7-DoF Bionic Hand with extended supination. 

 

cube from slipping (Figure 9a). Within this configuration, wrist flicks combined with coordinated finger positioning 

enabled clockwise or counterclockwise rotations of the cube. For flipping maneuvers, the thumb in conjunction with the 

index and middle fingers was used to push the cube against the metacarpal region of the thumb, after which a simultaneous 

wrist flick and thumb swivel produced the rotation. Once a coarse orientation was achieved, the hand attempted fine 

alignment by forming a firmer grasp [32]. The configuration illustrated in Figure 9a represents the firmest grasp 

achievable by the Bionic Hand, where the cube is lifted from the palm and stabilized in the target orientation. 
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Fig. 5: Distribution of goal hits per episode for the 7-DoF Bionic Hand with extended supination. 

 

In contrast, the Shadow Hand relied less on palm support and more on direct finger coordination. Its higher number of 

DoFs enabled stable in-hand reorientation without the need to exploit extrinsic forces to the same extent, allowing for 

more consistent manipulation strategies [7] [1]. Figure 5 shows the distribution of goal hits per episode during evaluation. 

While many episodes achieved zero goal hits, most successful episodes clustered around 4 to 8 hits, with a peak at 5 to 6. 

This indicates that the agent, when successful, was able to repeatedly reorient the cube within the same episode.  

The relationship between return and minimum rotation error per episode is illustrated in Figure 6. Successful episodes 

(blue) dominate the region close to the defined success tolerance (22.9°). Dropped episodes (orange) are associated with 

high rotation errors and consistently low returns, meaning that fewer drops occur after the task has been solved once. This 

confirms that the return function strongly correlates with orientation accuracy, and that the additional supination increased 

the likelihood of stabilizing the cube within the tolerance region. 

 

 
 

Fig. 6: Return as a function of minimum rotation error per episode 

 

Finally, Figure 7 shows the distribution of minimum rotation errors across episodes. Most successful runs achieved errors 

very close to the success threshold, with a dense concentration between 20° and 25°. A smaller fraction of episodes 

resulted in much higher errors (> 40°), typically corresponding to dropped cubes. The shaded region in the plot highlights 

the tolerance and near-miss zones, confirming that the agent was able to reliably achieve cube orientations near the success 

threshold, though occasional instability remained.  

 Overall, the introduction of an additional 90° of supination improved the agent’s ability to stabilize the cube and avoid 

manipulation of dead-ends. The results suggest that increased wrist mobility is a critical factor for achieving reliable in-

hand manipulation, as it reduces the dependence on momentum-driven reorientation strategies. 
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Fig. 7: Distribution of minimum rotation error per episode. 

 
 

Fig. 8: Return as a function of episode length. 

Instances where the cube converged close to the 

target orientation but failed to complete the 

reorientation task are highlighted in green. 

 

As illustrated in Figure 8, most cube drops occurred early in the episodes, suggesting that the initialization of cube states 

could be further optimized for the Bionic Hand. Additionally, several episodes showed instances where the agent achieved 

initial success but subsequently dropped the cube before completion. Across all evaluated episodes, 147 were classified 

as successful, 61 as drops, and 3 as near-misses. 

 

 
 

a) 7-DoF with extended supination Bionic Hand failing to 

reach the goal 

 
 

b) 7-DoF with extended supination Bionic Hand 

failing to reach the goal due to domain randomisation. 

 

Fig. 9: Performance of the 7-DoF extended supination Bionic Hand in two scenarios. 

 

As shown in Figure 9, the agent occasionally came very close to fully solving the cube reorientation task. However, 

in the example on the right (Figure 9b), the full 90° supination range had already been utilized, constraining the agent in 

a configuration from which further reorientation was not possible. Careful inspection reveals that the achieved range does 

not perfectly align with the intended 90° supination. This discrepancy arises from domain randomization: during training, 

joint limits were randomized across environments, and the agent learned behaviors under slightly different constraints. 

When evaluated in this instance, the learned strategy, effective in an environment with looser limited joint parameters, 

led the agent to attempt a rotation that exceeded the randomized limit of the current environment. As a result, the policy 

was trapped at the boundary of the joint’s feasible range, unable to complete the reorientation. 

 

4.3 Bionic Hand (8-DoF with Wrist Flexion/Extension) 

 

Even in this configuration, without enabling the extension of the supination, the results were still lacking. Since this 

version was designed as an exaggerated configuration of the Bionic Hand, the extra 90° of supination was also unlocked. 

With this additional freedom, the agent focused on solving the task in the most efficient way possible. The added axis 

allowing for flexion/extension of the wrist, together with the extended supination, provided relatively fast actuation speeds 

(180°/s for flexion/extension and 230°/s for supination, compared to only 80°/s for the fingers). As a result, the policy 

relied mainly on wrist motions to orient the cube, while the fingers were mainly used for stabilization and small corrective 

adjustments. 
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Fig. 10: 8-DoF Bionic Hand with wrist flexion/extension 

using the fast axes to orient the cube and keeping it in place 

with finger joints 

 
 

Fig. 11: Outcome distribution for the 8-DoF 

Bionic Hand with wrist flexion/extension 

 

The evaluation outcomes are summarized in Figure 11. Out of all episodes, 183 were classified as successful, while 

33 resulted in drops. The distribution of minimum rotation errors per episode is shown in Figure 12. Most successful trials 

achieved errors tightly clustered around the 22.9° tolerance, with a sharp peak between 20° and 25°. A smaller fraction 

of episodes produced much higher errors (> 40°), which typically corresponded to drops. Figure 13 shows the time-to 

first-success distribution. Most successful episodes converged within 50–100 steps, indicating that the additional wrist 

DoFs enabled rapid alignment strategies. Only a small number of cases required more than 200 steps, typically when the 

cube was initialized in an unfavorable pose. 

 

 
 

Fig. 12: Distribution of minimum rotation errors for the 

8-DoF Bionic Hand. 

 
 

Fig. 13: Time to first success in the 8-DoF Bionic 

Hand. 

 

Finally, Figure 14 shows return as a function of episode length. Most successful episodes cluster near the maximum 

length, reflecting policies that achieved repeated reorientations. In contrast, drops typically occurred earlier and yielded 

lower returns, whereas later drops were associated with higher returns, indicating that the agent often lost the cube only 

after several successful maneuvers.  

Overall, the 8-DoF configuration demonstrated a clear improvement in stability and efficiency compared to the 7-DoF 

versions. The fast wrist axes dominated the manipulation strategy, enabling rapid coarse reorientations, while the fingers 

provided fine control. 

 
Fig. 14: Return versus episode length for the 8-DoF Bionic Hand 
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4.4 Shadow Hand (24-DoF) 

 

Figure 15 presents the distribution of goal hits per episode during evaluation. In contrast to the Bionic Hand, the 

Shadow Hand achieved a broader spread of goal hits, with a significant portion of episodes exceeding ten successful 

reorientations. This suggests that the higher number of DoFs allow for more frequent and consistent in-hand reorientation 

cycles within a single episode. 

 

 
 

Fig. 15: Distribution of goal hits per episode for the 

Shadow Hand. 

 
 

Fig. 16: Distribution of minimum rotation error per 

episode for the Shadow Hand. 

 

The distribution of minimum rotation errors (Figure 16) further supports this observation. Most successful episodes 

achieved errors tightly clustered near the success threshold, with relatively few cases exceeding 40°. This concentration 

highlights the Shadow Hand’s ability to consistently bring the cube into near-goal orientations without relying on 

boundary strategies.  

Finally, Figure 17 illustrates the relationship between return and episode length. Most episodes terminated with either 

a clear success or a failure, suggesting that the Shadow Hand policy rarely exhibited unstable or oscillatory behavior. In 

comparison to the Bionic Hand, the distribution of dropped cases is more dispersed, with only a small fraction associated 

with low returns. Drops occurring later in the episode correspond to higher returns, indicating that the agent often 

completed several successful reorientations before ultimately losing the cube. This behavior was observed only when 

using the modified inhand_manipulation_env.py in combination with the adapted play.py script that enabled explicit 

tracking of successes. In contrast, when evaluated with the original environment configuration used for training and the 

un-edited play.py, drops were virtually absent but could not be systematically recorded. 

 

 
Fig. 17: Return as a function of episode length for the Shadow Hand. Episodes that converged to kinematic deadlock 

states are highlighted in green. 

 

Overall, the Shadow Hand achieved more frequent and stable reorientation cycles than the Bionic Hand, with tighter 

rotation error distributions and fewer near-miss outcomes. Some dropped episodes emerged, however these typically 

followed several successful reorientations. The results highlight that higher degrees of freedom increase robustness in 

cube stabilization but also expand the policy search space, making training outcomes more sensitive to reward design 

and exploration. 

 

5. Discussion 

 

The results indicate that the primary bottleneck is mechanical rather than algorithmic. The 7-DoF baseline plateaued 

under realistic actuator limits, favoring balance-and-hold over true reorientation. The findings suggest that wrist mobility 
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plays a central role in enabling stable in-hand manipulation while minimizing reliance on high-velocity, impulse-based 

motions. As expected for lower intrinsic dexterity, the bionic variants leaned on extrinsic contacts (palm and thumb–

finger corridor), while the Shadow Hand required less environmental support.  

Simulation fidelity limits remain: linear mimic with very high P and near-zero D suppresses backlash, some 

initializations left little corrective margin and broad domain randomization ranges can teach strategies that overfit to joint-

limit “slack.” Although a deeper network was used for the bionic hand to account for nonlinearities, training both hands 

with the same architecture would rule out network size as a factor in the performance gap.  

Practically, modest and well-placed DoF/range changes can deliver large gains. Fast orthogonal wrist axes plus finger 

stabilization proved especially effective. Further steps include modelling the four-bar as parallel kinematics with a dead-

zone (backlash) controller in USD, switch from simulator pose to vision estimates for sim-to-real, diversify 

objects/contacts, and report stability-oriented metrics (time-in-tolerance, multi-success streaks, actuation costs), 

culminating in zero-shot hardware validation. 

 

5. Summary and Outlook 

 

In this work, a custom bionic hand was evaluated to determine whether it can be trained to perform dexterous in-hand 

cube manipulation using RL. A reproducible pipeline was established in Isaac Lab: CAD models were exported to URDF 

(with linear mimic couplings), converted to USD, and used to train PPO agents via skrl. Since URDF cannot represent 

closed kinematic loops, the distal–middle phalanx coupling was approximated with linear mimic joints. Within Isaac Sim, 

this induces a PD controller with stiffness and damping mapped to P /D gains. For stiff rod-driven fingers, near-infinite 

stiffness and minimal damping were required to emulate rigid linkages; however, this configuration removes backlash. 

As a result, a Proportional–Threshold (PT) controller with a dead-zone was identified as a promising alternative for future 

work to better capture transmission free-play.  

From a learning perspective, the 7-DoF baseline could balance the cube but failed to consistently reorient it once 

actuator speed limits were imposed. In the absence of actuator constraints, the policies exploited high-velocity, 

momentum-transfer strategies, but performance plateaued once these were restricted. Extending wrist supination by 90° 

(to 270° total) enabled recovery postures and repeatable reorientation cycles, improving success rates and reducing 

kinematic deadlock situations. Adding wrist flexion/extension (resulting in an 8-DoF hand) further enhanced stability and 

efficiency. For comparison, the Shadow Hand (24-DoF) achieved the tightest rotation-error distributions and frequent 

multi-success episodes, though it occasionally exhibited late drops under the evaluation protocol that explicitly logged 

successes.  

Future work can improve both the modeling and evaluation of the bionic hand. On the modeling side, the four-bar 

linkage with a stiff rod could be represented as parallel kinematics directly in USD, therefore capturing contact 

interactions more accurately. A custom backlash-controller may also be integrated to more accurately reproduce the true 

mechanical free-play. On the learning side, training could be extended with convolutional neural networks that estimate 

the cube pose from virtual camera input, rather than relying on ground-truth data from Isaac Sim, to facilitate sim-to-real 

transfer. Beyond single-object tasks, future experiments could incorporate multiple objects, varied masses, and different 

friction properties. Reporting standardized metrics, such as success rate, median rotation error, time-to-success, multi-

success streaks, and actuation costs (energy/torque), would further strengthen comparability across studies. Finally, 

validation on real hardware with zero-shot transfer would provide the ultimate benchmark for the proposed approach.  

Overall, the results show that extending supination significantly improved success and recovery, while adding 

flexion/extension increased efficiency. The 7-DoF hand relied heavily on external forces such as gravity to achieve 

reorientation, whereas the Shadow Hand required less environmental support. 
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