36TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

DOI: 10.2507/36th.daaam.proceedings.xx

EVALUATING DEXTERITY LIMITATIONS OF BIONIC HANDS
VIA REINFORCEMENT LEARNING

Yussef Abdel-Wahab, Mohamed Aburaia & Ali Aburaia

www.daaam.info
Established in 1990

This Publication has to be referred as: Katalinic, B[ranko]; Park, ¥ [ong] S[eok] & Smith, M[ark] (2025). Title of
Paper, Proceedings of the 36th DAAAM International Symposiurniy, pp.xxxx-xxxx, B. Katalinic (Ed.), Published by
DAAAM International, ISBN 978-3-902734-xx-x, ISSN 172649679, Vienna, Austria

DOI: 10.2507/36th.daaam.proceedings.xxx

Abstract

In-hand manipulation is a key benchmark for dextefous jrobotic control, especially in bionic hands where mechanical
simplicity competes with functional complexity. This work uses Isaac Sim and reinforcement learning (RL) to evaluate
the dexterity of a custom bionic hand trained to manipulate a cube in 3D space. The goal is to assess whether the design
provides sufficient degrees of freedom (Ddk),to complete the task under domain randomization, enabling potential zero-
shot sim-to-real transfer. Despite high-fidelity'simulation and robust policy optimization, the bionic hand failed to perform
the task, suggesting that limitations stemffrof its mechanical design rather than learning or modeling errors. To verify
this, the same setup was tested on the Shadow Hand, which succeeded. Three bionic hand variants were then evaluated:
the baseline, one with extended supigation, and one with an added wrist joint. Their performance was compared to the
24-DoF Shadow Hand. The modified designs showed clear improvement, isolating the effects of joint range and
placement. Results indicate that nfoderate increases in motion range or adding even a single DoF can substantially enhance
manipulation ability, emphasizingtthe importance of joint-level design in achieving dexterous behavior in bionic and
robotic hands.

Keywords: Dexterous R@baties, Reinforcement Learning, In-Hand Manipulation, Sim-to-Real

1. Introduction

Modern roboti€ syStems are typically designed with a specific use case in mind and deployed in controlled, structured
environments, While this design has enabled reliable performance in industrial automation and service robotics, it shows
clear limitétions, iffhuman-centric settings, which are characterized by variability, uncertainty, and unstructured
interactiops 4] [2]. To address this challenge, research has increasingly turned toward humanoid and bionic robotic
system§ that'ean operate in environments originally built for humans.

\Withirthis area of research, dexterous robotic hands and arms represent a particularly promising but difficult path. A
bionic arrm with multiple degrees of freedom can, in principle, replicate human-like manipulation and enable a wide range
oftasks. However, the very complexity that makes such systems versatile also creates challenges. High-dimensional
control spaces, nonlinear joint couplings, and intricate contact dynamics make classical control methods difficult to apply
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effectively [2]. As a result, controllability and robustness remain major bottlenecks in the deployment of dexterous robotic
systems [1].

Previous attempts to solve the complex nature of high dimensional action spaces required the use of model predictive
training or contact-invariant optimization [3] [4]. The inherent issue with in-hand manipulation stems most likelyanot
from the action space alone but also the observation space, including contact points [5].

In recent years, reinforcement learning (RL) has emerged as a compelling alternative for solving these challenges4?],
[6]. Unlike traditional controllers, RL agents can learn policies directly from interaction data, making therm wellssuited
for tasks with complex dynamics such as in-hand object manipulation. Landmark studies have demonstrated. that‘RL can
control high-degree-of-freedom robotic hands to perform nontrivial manipulation tasks in simulation and, with the help
of techniques like domain randomization, even transfer these skills to real-world hardware [7]. Thesg=advariCes suggest
that simulation-based RL provides a viable pathway for training dexterous bionic arms to achievesrobust, human-like
manipulation in diverse environments.

2. State of the Art

Dexterous in-hand manipulation requires coordinated control across many coupled degrees/of freedom. In practice,
however, many robotic and prosthetic hands provide only a small number of acfuated joints. This mismatch forces
controllers to achieve outcomes that normally require complex hands with only simplified mechanisms. The following
overview highlights how research has approached this problem through contactased Rlanning, learning-based control,
the exploitation of external forces, and design strategies that rely on either compliafee or rigid linkages.

Early approaches to dexterous manipulation treated it as a problem of motiGfiglanning with explicit contact reasoning.
Contact invariant optimization planned trajectories in combination with contactévents, which produced finger gaits and
regrasp motions in simulation [4], [5]. Predictive control schemes simitatly syhthesized rapid behaviors for dynamic
manipulation tasks [3]. These methods established as an important foundation that, with accurate models of friction and
contact, coordinated motions could be planned even when actuation was, limited. However, in real scenarios such
approaches were often not sufficient, since minor errors in modeling @r friction parameters could destabilize the resulting
plans [1], [2]. For hands with few actuators, the dependence_on, subitle contact exploitation made the gap between
simulation and reality especially significant.

This behavior that emerged from these limitations is referred,to a§ extrinsic dexterity. Instead of relying only on the
internal joints of the hand, a controller can make use of gravity, ineffia, and environmental contact surfaces to reorient an
object [8]. Some studies demonstrated how external forces®@an increase the set of reachable object configurations with
minimal finger motion [8]. More recently, learning-baseéd methods rediscovered these principles, with policies that
pressed or rolled objects against planes or the palm.to‘Create rotations that could not be commanded directly [9], [10].
This work makes clear how a simple hand can still psffarm meaningful reorientation by creating contact situations that
substitute for missing degrees of freedom. Parameterized manipulation primitives now provide a structured way to
represent such strategies [11].

The rise of deep RL introduced a powerful alternative to analytic control. With appropriate reward design and
exploration, RL agents discovered non-intuitive solutions for in-hand reorientation tasks [2]. A landmark example is the
OpenAl Shadow Hand project, in which a poligy optimized with Proximal Policy Optimization (PPO) [6] successfully
reoriented a cube and later solved the Riibik'§ Cube [7]. Success depended on extensive domain randomization, which
randomized masses, frictions, and joint gaias40 improve robustness [12]. Later work extended this pipeline to more agile
behaviors on the same platform, showfing that realistic simulation combined with massive randomization can enable direct
transfer to hardware [13]. Theoretical*analyses now provide guarantees that domain randomization can narrow the gap
between simulated and real envirghments under broad conditions, and that memory-dependent policies can further
stabilize performance when dyparies'vary [14].

Although many of these advanges were demonstrated on hands with many actuated joints, the same principles can be
applied to simpler devicesaI engon-driven designs with rolling contacts, for example, provide natural compliance that
makes it easier for policigs £0 £xploit contact geometry [15]. At the opposite end, dynamic two-handed throw-and-catch
experiments highlight hbw faémentum and timing can replace internal joints with well-orchestrated external effects [16].
Recent studies al$q, démonstrate end-to-end visual policies for humanoid manipulation tasks, showing that learning
directly from camera“@bservations can reduce the mismatch between simulation and sensor inputs [17]. Other work
combines RL with demonstration-led curricula, which improves stability during training without altering the mechanical
complexity of the platform [18].

The physical'méchanism itself ultimately determines what strategies are possible. Tendon-driven fingers allow a form
of compliant following that can be approximated by proportional—derivative joint controllers, where dependent joints
naturally®ag Behind and adjust smoothly. By contrast, rod-coupled or gear-coupled mechanisms behave as stiff kinematic
loops. These"must be modeled with extremely high stiffness values and minimal damping, and backlash needs to be
represented explicitly to avoid unrealistic rigid couplings. Studies that successfully transferred from simulation to real
Shadew Hands emphasize the importance of aligning simulator contact models, joint limits, and controller gains with the
dctual mechanism [13].

Ir' summary, low-actuator hands can still achieve tasks that normally require complex devices, provided that they
exploit extrinsic contacts, are trained under diverse simulation conditions, and are modeled with accurate representations
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of their mechanical couplings. High-actuator hands remain the most capable, but targeted design choices such as
compliant tendons or fast global wrist joints can raise the capabilities of simpler hands. This understanding motivates the
following study, in which a rod-coupled bionic hand with limited joints is evaluated against a high-degree Shadow Hand
baseline. The simulations explicitly account for stiff linkage behavior and backlash, and training is performed with RRO
in Isaac Sim with extensive domain randomization following established practice.

3. Materials and Methodes

In this work, the Bionic Arm developed in [19] was evaluated in the in-hand cube manipulation tagk and\compared
against the Shadow Hand [20]. An altered version of the Bionic Arm was also tested, incorporating ansadditional axis in
the wrist. To improve computational efficiency during simulation, the CAD models of both versiops.of tiie Bionic Arm
were simplified. Fasteners such as screws, nuts, and bolts were intentionally excluded. The outergeometry, particularly
the surfaces that may come into contact with the cube, was preserved to avoid altering interactionehavior. Regions
previously occupied by washers were filled to prevent edge gaps that could catch the cubg.arid*ead to non-transferable
behaviors. Internal cavities not involved in contacts were also filled where appropriaté. Opessimplification that may
influence sim-to-real transfer is the exclusion of the metallic linkage rods that couple the"distal phalanx as depicted in
Fig. 1. This rod can collide with the cube, since it is mounted on the inside of each finger.

Fig. 1. teel linkages (yellow) connecting the gistant phalanx with the driven middle phalanx.

It was left out because it forms a closed-loop mechariism that the Unified Robot Description Format (URDF) does not
natively support. URDF is an XML-based descriptiondé@figuage widely used in robotics to specify a robot’s kinematic and
dynamic properties, including joints, links, and.sergar gonfigurations. However, URDF supports only tree-structured
kinematic chains and does not represent closed-loopamechanisms such as the four-bar linkage in the Bionic Hand. As a
workaround, URDF provides the mimic joint feature/In this approach, one joint is defined as dependent on another, its
position expressed as a linear function of thegparent joint’s position, as shown in Equation 1.

Qaistal = Aqmiqate + B (1)

Where a is a scaling factor and p ansdffset. Since four-bar linkages in robotic fingers constrain the distal joint to a single
degree of freedom (DoF) [21], ang=the aotion of the distal phalanx in the Bionic Arm is a linear function of the middle
phalanx, the mimic joint feature €a/i be used as an approximation. In this implementation, the distal phalanx joints were
set to mimic the middle phalansjaliits with the appropriate scaling factor, effectively reproducing the closed-loop motion
in simulation. The assemblyican jthen be exported from SolidWorks using the ROS add-on sw_urdf _exporter. The
resulting URDF was thengdiported as a Universal Scene Description (USD) into NVIDIA Isaac Sim for simulation.

Inside Isaac Sim furthel properties of the joints and linkages can be configured. Since the connection to the fingertips
in the Bionic Hand#rototype is established with a stiff metal rod instead of compliant tendons (Fig. 1), the mimic-follow
behavior requires awmore detailed description. Behind the mimic tag, Isaac Sim implements a standard Proportional—
Derivative (PD) controller, where the stiffness parameter corresponds to the proportional gain (P-gain) and the damping
parameter correspands to the derivative gain (D-gain) [22]. This formulation is appropriate for tendon-driven linkages, as
it allows the dépendent joint to give in and lag slightly behind during movement. Since most dexterous robotic hands,
such as the Shadow,kand, employ tendon-driven actuation, the PD-based mimic joint is typically sufficient [7].

In eontrast, the Bionic Hand prototype uses a rigid rod, linear motor mechanism, where each finger is directly actuated
along assifgleaxis. For such stiff kinematics, a conventional PD controller is inadequate, since the mechanism requires
an ihstahtaneous response of the driven linkage. To approximate rigid coupling in simulation, the stiffness must be set to
a very high (near-infinite) value, while damping is set to zero. This ensures that mimic joints behave as stiff connections,
causing the fingertips to follow the driving joint without delay.

However, to enable zero-shot transfer from simulation to the real world, it is also necessary to simulate the backlash
Intreduced by the drive mechanism as accurately as possible. In this case, a Proportional-Threshold (PT) controller would
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be more appropriate than a PD controller [23], [24]. A PT controller is a type of non-linear control system. Unlike a
standard proportional controller, that applies a corrective force directly proportional to the position error, a PT controllen
incorporates a dead zone (threshold). Within this dead zone, the controller output remains zero, meaning no cosrective
action is applied. Only when the error exceeds this predefined threshold does the controller activate, applying a Terce
proportional to the remaining error [25]. To overcome this issue, empirical values for the P- and D-gains wefe_set to
approximate the backlash observed on each finger.

3.1 Reinforcement Learning Configuration

Isaac Sim was used with the PhysX backend to simulate the physics in the environment, while Isaac Jsab Wa&S employed
to manage the RL tasks. For training, the RL library skrl [26] was used together with a PPO agent [6],

The only difference in training between the Shadow Hand and the Bionic Hand was the size and depth of the neural
network policy. The Shadow Hand was trained with a four-layer fully connected network of size§ [532, 512, 256, 128],
whereas the Bionic Hand employed a deeper five-layer network of sizes [1024, 1024512256, 128]. The larger
architecture was chosen to better handle the increased complexity of the Bionic Hand, whichdreluded nonlinearities and
backlash effects in its joints, making the policy optimization problem more challenging [27], [28].

The observation space consisted of 120 dimensions, including joint positions @and velocities, the cube’s position,
orientation, and velocity, the goal position and orientation, fingertip positions and velogities, as well as the previous action
values. The action space, in contrast, was limited to seven dimensions, corresponding,to‘the commanded positions of each
actuated DoF. A summary of the observation and action space is provided in Table',

Space Description
Observations (120D)  Joint positions and elegities;
Cube position, orientatign, velocity;
Goal position and.oriertation;
Fingertip positiops andvelocities;
Previous actiens
Actions (7D) Target poSitions for each DoF

Table 1. Observation and Action Space Configuration

Each training run consisted of 80,000 simulation steps with'8192 parallel environments. To promote robustness and enable
zero-shot transfer from simulation to the real wagld,” demain randomization was applied [12], [29]-[31]. For each
environment instance, random values were sampled g the following parameters:

static and dynamic friction between cube aid hand,
joint stiffness and damping values,

upper and lower joint limits,

mass distribution of the cube,

gravity vector applied to the scene.

Parameter Value
Distam€@reward scale -10.0
Rotatigh reward scale 1.0
ACtion penalty scale —0.001
Gaal bonus 250
Success tolerance (rad) 0.05
Fall penalty 0
Fall distance 0.24
Velocity obs. scale 0.2
Force/torque obs. scale 10.0
Averaging factor (o) 0.1
Action moving average 0.3

Table 2. Reward Function Parameters
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The reward function was designed to encourage successful object manipulation. The most important components were:

o Rotation reward: encouraging alignment between cube and goal orientation.
e Action penalty: discouraging unnecessarily large or unstable joint actions.
e Goal bonus: rewarding successful alignment within tolerance.

Additional shaping terms (e.g., velocity scaling, force/torque scaling, and averaging factors) were tuned empirically to
balance stability and exploration. The key reward scaling parameters are summarized in Table 2.

4. Results

To evaluate the performance of each agent, several parameters were tracked across episodes to“Campadre the different
configurations. In particular, the number of successful trials and dropped episodes was recorded T6r each run. Each
episode consisted of 600 steps and was terminated either when the object was dropped or ywhen tfiesfpaximum step count
was reached. Episodes that did not result in a success or a drop were classified as other.

A distinction was made when classifying cases in which both the success and drop conditions were triggered. For the
analysis of episode outcomes, any episode in which the cube was successfully reorignted at least once was counted as a
success. In contrast, when evaluating reward values or episode length, such cases were tabeled as drops. In addition, the
rotational error was computed and monitored throughout each episode, along witfitthe, carresponding return values.

To ensure stability of the simulation and avoid introducing artifacts, the trainirigyof the Bionic Hand in its standard
configuration, as presented in [19], was conducted in stages. The process began witiethe kinematic model and joint limits,
while actuator dynamics were left unconstrained. In the next step, stiffness ancylamping values were explicitly defined
for the joints. Subsequently, joint velocity limits were enforced to beftersapproximate the physical system. Finally,
simulations were repeated with backlash enabled on the joints and domaify#andomization applied to capture additional
mechanical characteristics of the real hardware.

With this staged approach, the standard configuration was able to'seguentially solve the cube rotation task. However,
once actuator speed limits were introduced, the same level of perfermange was no longer achievable. It was observed that
the agent initially relied on rapid, momentum-based reorientatién motions, a strategy that became infeasible once actuator
velocity limits were enforced.

Training the 7-DoF Bionic Hand with all limitations and domairi'randomization enabled proved unsuccessful without
further modifications. The system appeared to lack the ability®te maneuver the cube into more favorable positions within
the workspace of each finger, which prevented complex sedrientations. As a result, the agent became trapped in a reward
plateau. Instead of attempting reorientation, which aftén‘ed,to dropping the cube, it learned to balance the cube on the
palm to maximize reward.

To address this, the wrist rotation was extended toingfude an additional 90° of supination beyond the typical human
anatomical range, resulting in a full 270° range'of miotion. This modification was motivated by observations from training
the 8-DoF version of the Bionic Hand that also included dorsiflexion and palmar flexion of the wrist. In that case, although
the added DoFs enabled more varied stratéglies, the limited supination range still caused difficulties: depending on the
randomized initial pose and velocity, the,cub&often rolled toward the hypothenar region, from which recovery was
impossible. Consequently, the agent adopted an alternative strategy of balancing the cube on the back of the thumb, where
the available 90° of supination could be expldited to stabilize, recover, and even reorient the cube.

4.1 Bionic Hand (7-DoF)

The Bionic Hand was also evaluatedstinder full physical constraints, including domain randomization, joint backlash, and
velocity limits. Under these €onditions, the task could not be solved. In rare cases, when the randomized initial state was
favorable, the hand was able 1@ balance the cube on its palm. However, complex reorientation maneuvers were not
attempted, as the limited‘actuation strategies provided few options for moving the cube into configurations that enabled
further manipulatiofi.

As illustrated ImnEigure 2, the system converged to a steady state after approximately 80,000 training timesteps, with
no further manipulations attempted. Based on these results, it can be concluded that the initialization of the cube led to
frequent early diaps before the hand could react. This effect was reinforced by the velocity limits and by initializing the
robotic hand in a tandom configuration. Without the additional supination range, the palm’s orientation was often
misaligned gwith “tic £ube’s initial dropping velocity vector, causing deflections on impact and leading to premature
episode, tefinination.
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Fig. 2: Steady state of the 7-DoF Bionic Hand after Fig. 3: Outcome distributiefi for 200 evaluation
80,000 timesteps of training, where the cube remains episodes of the 7-DoF Bighic Hand under full constraints.
balanced on the palm without further manipulation.

Figure 3 shows that in 80 out of 200 episodes the cube remained balanced on the'palm. Of the 200 episodes, eight were
registered as successful completions. However, seven of these eight,cases were immediately followed by a drop,
indicating that they were likely favorable initializations rather than genuing selves. This interpretation is supported by the
time-to-success distributions in Figure 4, where most successes occurred ungealistically early. Only one episode reached
completion at around 100 steps, which aligns more closely with the Tean time-to-success observed in the extended
supination configuration.

Overall, these results demonstrate that without the additional supifation range, the Bionic Hand was unable to reliably
achieve stable reorientation.

4.2 Bionic Hand (7-DoF with Extended Supination)
The reorientation strategy of the 7-DoF Bionic Hand with,Extended Supination relied strongly on extrinsic dexterity [8]-
[10]. Whenever possible, the cube was allowed to festson the palm while the distal phalanx of the thumb was positioned

against the proximal phalanx of either the middle orindex/finger, creating a confined space that prevented the
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Fig. 4: Cgmparisowof time-to-success distributions. Left: 7-DoF Bionic Hand under full constraints.
Right: 7-DoF Bionic Hand with extended supination.

o
=]

cube from slipping (Figure 9a). Within this configuration, wrist flicks combined with coordinated finger positioning
enabled clockwise aicounterclockwise rotations of the cube. For flipping maneuvers, the thumb in conjunction with the
index and middlefingers was used to push the cube against the metacarpal region of the thumb, after which a simultaneous
wrist flickeand thumb swivel produced the rotation. Once a coarse orientation was achieved, the hand attempted fine
alignmerizby~forming a firmer grasp [32]. The configuration illustrated in Figure 9a represents the firmest grasp
achievable by the Bionic Hand, where the cube is lifted from the palm and stabilized in the target orientation.
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Fig. 5: Distribution of goal hits per episode for the 7-DoF Bionic Hand with extefided supination.

In contrast, the Shadow Hand relied less on palm support and more on direct finger coordination. Its higher number of
DoFs enabled stable in-hand reorientation without the need to exploit extrinsic Tces™to the same extent, allowing for
more consistent manipulation strategies [7] [1]. Figure 5 shows the distributiograf.goal hits per episode during evaluation.
While many episodes achieved zero goal hits, most successful episodes clusterédround 4 to 8 hits, with a peak at 5 to 6.
This indicates that the agent, when successful, was able to repeatedly reqgient theycube within the same episode.

The relationship between return and minimum rotation error per episodg igfiitstrated in Figure 6. Successful episodes
(blue) dominate the region close to the defined success tolerance (22.9°). Dtopped episodes (orange) are associated with
high rotation errors and consistently low returns, meaning that fewerdropgescur after the task has been solved once. This
confirms that the return function strongly correlates with orientation acefiracy, and that the additional supination increased
the likelihood of stabilizing the cube within the tolerance regiofi.
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Fig. 6%Return as a function of minimum rotation error per episode

Finally, Figure 7 shows the distribution of minimum rotation errors across episodes. Most successful runs achieved errors
very close to the sugeess threshold, with a dense concentration between 20° and 25°. A smaller fraction of episodes
resulted in much higher errors (> 40°), typically corresponding to dropped cubes. The shaded region in the plot highlights
the tolerance and neakémiss zones, confirming that the agent was able to reliably achieve cube orientations near the success
threshold, though occasional instability remained.

Overall, thesritreduction of an additional 90° of supination improved the agent’s ability to stabilize the cube and avoid
manipulation of,dead-ends. The results suggest that increased wrist mobility is a critical factor for achieving reliable in-
hand manigulation,«$ it reduces the dependence on momentum-driven reorientation strategies.
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Instances where the ¢ubs‘Converged close to the
target orientation but failéd to complete the
reorientation 4agk are highlighted in green.

As illustrated in Figure 8, most cube drops occurred early in the episodes, suggestifigsthat the initialization of cube states
could be further optimized for the Bionic Hand. Additionally, several episodes,showethinstances where the agent achieved
initial success but subsequently dropped the cube before completion. Across all evaluated episodes, 147 were classified
as successful, 61 as drops, and 3 as near-misses.

B B

a) 7-DoF with extended supination Bionic,Hand Tailing to b) 7-DoF with extended supination Bionic Hand
reach the goal failing to reach the goal due to domain randomisation.

Fig. 9: Performance of the 7/DoF extended supination Bionic Hand in two scenarios.

As shown in Figure 9, the agent‘@gcasionally came very close to fully solving the cube reorientation task. However,
in the example on the right (Figur€ 9b), the full 90° supination range had already been utilized, constraining the agent in
a configuration from which furtheégfreorientation was not possible. Careful inspection reveals that the achieved range does
not perfectly align with the iniended 90° supination. This discrepancy arises from domain randomization: during training,
joint limits were randomized“agcross environments, and the agent learned behaviors under slightly different constraints.
When evaluated in this ifistange, the learned strategy, effective in an environment with looser limited joint parameters,
led the agent to attepwpt,a rQtation that exceeded the randomized limit of the current environment. As a result, the policy
was trapped at thefboundary of the joint’s feasible range, unable to complete the reorientation.

4.3 Bionic Hand (8-DoF with Wrist Flexion/Extension)

Even in this\configuration, without enabling the extension of the supination, the results were still lacking. Since this
version wag designed as an exaggerated configuration of the Bionic Hand, the extra 90° of supination was also unlocked.
With titig, additional freedom, the agent focused on solving the task in the most efficient way possible. The added axis
allowing forflexion/extension of the wrist, together with the extended supination, provided relatively fast actuation speeds
(180%s!forflexion/extension and 230°/s for supination, compared to only 80°/s for the fingers). As a result, the policy
reliéd mainly on wrist motions to orient the cube, while the fingers were mainly used for stabilization and small corrective
adjustments.
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Fig. 10: 8-DoF Bionic Hand with wrist flexion/extension Fig. 11: Outcome glistribution for the 8-DoF
using the fast axes to orient the cube and keeping it in place Bionic Hand with wrist Tlexion/extension

with finger joints

The evaluation outcomes are summarized in Figure 11. Out of all episodes, 183 werexclassified as successful, while
33 resulted in drops. The distribution of minimum rotation errors per episode is s@min Figure 12. Most successful trials
achieved errors tightly clustered around the 22.9° tolerance, with a sharp peak between 20° and 25°. A smaller fraction
of episodes produced much higher errors (> 40°), which typically corresponded f&wrops. Figure 13 shows the time-to
first-success distribution. Most successful episodes converged within 50-100 Sieps, indicating that the additional wrist
DoFs enabled rapid alignment strategies. Only a small number of cases regtived,tmore than 200 steps, typically when the
cube was initialized in an unfavorable pose.
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Fig. 12: Distribution of minimum rotatiGri'efrors for the Fig. 13: Time to first success in the 8-DoF Bionic
8-DoF Bionic Hand. Hand.

Finally, Figure 14 shows return @§,a function of episode length. Most successful episodes cluster near the maximum
length, reflecting policies that ackfieVed tepeated reorientations. In contrast, drops typically occurred earlier and yielded
lower returns, whereas later dropgdvere associated with higher returns, indicating that the agent often lost the cube only
after several successful manefivers,

Overall, the 8-DoF configusation demonstrated a clear improvement in stability and efficiency compared to the 7-DoF
versions. The fast wrist axes tieminated the manipulation strategy, enabling rapid coarse reorientations, while the fingers
provided fine control:

Return vs. length
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Fig. 14: Return versus episode length for the 8-DoF Bionic Hand
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4.4 Shadow Hand (24-DoF)

Figure 15 presents the distribution of goal hits per episode during evaluation. In contrast to the Bionic Hand %the
Shadow Hand achieved a broader spread of goal hits, with a significant portion of episodes exceeding ten succeSsfui
reorientations. This suggests that the higher number of DoFs allow for more frequent and consistent in-hand reorjentation
cycles within a single episode.

Goal hits per episode Min rotation error per episode (deg)
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Fig. 15: Distribution of goal hits per episode for the Fig. 16: Distriplitien of minimum rotation error per
Shadow Hand. episdde for the Shadow Hand.

The distribution of minimum rotation errors (Figure 16) further suppofts this observation. Most successful episodes
achieved errors tightly clustered near the success threshold, with relatively Tew cases exceeding 40°. This concentration
highlights the Shadow Hand’s ability to consistently bring the culefinto near-goal orientations without relying on
boundary strategies.

Finally, Figure 17 illustrates the relationship between returfi and episode length. Most episodes terminated with either
a clear success or a failure, suggesting that the Shadow Hand policy#arely exhibited unstable or oscillatory behavior. In
comparison to the Bionic Hand, the distribution of dropped cases is more dispersed, with only a small fraction associated
with low returns. Drops occurring later in the episode,¢orréspond to higher returns, indicating that the agent often
completed several successful reorientations before ultimately losing the cube. This behavior was observed only when
using the modified inhand_manipulation_env.py ipFeombipation with the adapted play.py script that enabled explicit
tracking of successes. In contrast, when evaluated ‘with the original environment configuration used for training and the
un-edited play.py, drops were virtually absent batycouldariot be systematically recorded.
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Fig. 17: Return a5 a function of episode length for the Shadow Hand. Episodes that converged to kinematic deadlock
states are highlighted in green.

Overall, therShiadow Hand achieved more frequent and stable reorientation cycles than the Bionic Hand, with tighter
rotation error distributions and fewer near-miss outcomes. Some dropped episodes emerged, however these typically
followed sdveralsue€essful reorientations. The results highlight that higher degrees of freedom increase robustness in
cube stahilization but also expand the policy search space, making training outcomes more sensitive to reward design
and exploration.

5. aDiscUssion

The results indicate that the primary bottleneck is mechanical rather than algorithmic. The 7-DoF baseline plateaued
urnder realistic actuator limits, favoring balance-and-hold over true reorientation. The findings suggest that wrist mobility
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plays a central role in enabling stable in-hand manipulation while minimizing reliance on high-velocity, impulse-based
motions. As expected for lower intrinsic dexterity, the bionic variants leaned on extrinsic contacts (palm and thumb=
finger corridor), while the Shadow Hand required less environmental support.

Simulation fidelity limits remain: linear mimic with very high P and near-zero D suppresses backlash, seme
initializations left little corrective margin and broad domain randomization ranges can teach strategies that overfitftojeint-
limit “slack.” Although a deeper network was used for the bionic hand to account for nonlinearities, training hoth hahds
with the same architecture would rule out network size as a factor in the performance gap.

Practically, modest and well-placed DoF/range changes can deliver large gains. Fast orthogonal wrist axes phus finger
stabilization proved especially effective. Further steps include modelling the four-bar as parallel kinematics with a dead-
zone (backlash) controller in USD, switch from simulator pose to vision estimates for simsto-réal, diversify
objects/contacts, and report stability-oriented metrics (time-in-tolerance, multi-success streaks,, actéation costs),
culminating in zero-shot hardware validation.

5. Summary and Outlook

In this work, a custom bionic hand was evaluated to determine whether it can be trained@"to pefform dexterous in-hand
cube manipulation using RL. A reproducible pipeline was established in Isaac Lab: CAD modeis were exported to URDF
(with linear mimic couplings), converted to USD, and used to train PPO agents via $k#h, Since URDF cannot represent
closed kinematic loops, the distal-middle phalanx coupling was approximated withilinear mimic joints. Within Isaac Sim,
this induces a PD controller with stiffness and damping mapped to P /D gains. Forstift fod-driven fingers, near-infinite
stiffness and minimal damping were required to emulate rigid linkages; howeVerythis configuration removes backlash.
As aresult, a Proportional-Threshold (PT) controller with a dead-zone was identified as a promising alternative for future
work to better capture transmission free-play.

From a learning perspective, the 7-DoF baseline could balance the cubé but failed to consistently reorient it once
actuator speed limits were imposed. In the absence of actuatop,constraints, the policies exploited high-velocity,
momentum-transfer strategies, but performance plateaued once theseywerefestricted. Extending wrist supination by 90°
(to 270° total) enabled recovery postures and repeatable reorigatation cycles, improving success rates and reducing
kinematic deadlock situations. Adding wrist flexion/extension {resultifig in an 8-DoF hand) further enhanced stability and
efficiency. For comparison, the Shadow Hand (24-DoF) achiewged the tightest rotation-error distributions and frequent
multi-success episodes, though it occasionally exhibited late dropstunder the evaluation protocol that explicitly logged
successes.

Future work can improve both the modeling and evaluation’of the bionic hand. On the modeling side, the four-bar
linkage with a stiff rod could be represented as_pafrablel Kinematics directly in USD, therefore capturing contact
interactions more accurately. A custom backlash-conty@ier may also be integrated to more accurately reproduce the true
mechanical free-play. On the learning side, training‘eould be extended with convolutional neural networks that estimate
the cube pose from virtual camera input, ratheritharfelying on ground-truth data from lIsaac Sim, to facilitate sim-to-real
transfer. Beyond single-object tasks, future experiments could incorporate multiple objects, varied masses, and different
friction properties. Reporting standardizedimetrics, such as success rate, median rotation error, time-to-success, multi-
success streaks, and actuation costs (eneray/terque), would further strengthen comparability across studies. Finally,
validation on real hardware with zero-sh@t transfer would provide the ultimate benchmark for the proposed approach.

Overall, the results show that extending” supination significantly improved success and recovery, while adding
flexion/extension increased efficienéy. The 7-DoF hand relied heavily on external forces such as gravity to achieve
reorientation, whereas the Shadow Hahgd required less environmental support.
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