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Abstract

In Search and Rescue (SAR) operations, rapid andagCurate human detection in remote or hazardous areas is critical for
saving lives. This study explores the applicatiop=af madern computer vision algorithms that enable automated, real-time
human detection. The focus is placed on deep learringymethods, particularly convolutional neural networks (CNNSs), with
an emphasis on models such as YOLO (Yau Only &80k Once). Although other models may offer higher accuracy, their
computational demands pose challenges fonfeal-time processing. The proposed approach was tested on aerial imagery
from well-known HERIDAL dataset. The MERIDAL dataset primarily contains simulated rescue scenarios in
mountainous and rural areas. The resulis demonstrate that the model achieves a recall of 85.6% at an input image
resolution of 1024pXx, despite the input image resolution being reduced by nearly four times. Furthermore, the real-time
detection can be achieved without significant loss of accuracy, even under low-visibility conditions and complex terrain.
Overall, the findings confirm the pateritial of such systems for practical use in real-world SAR missions.

Keywords: computer vision, sweman”detection, real-time processing, search and rescue missions, convolutional neural
networks.

1. Introduction

In emergency Sitwdtions such as natural disasters, accidents, or missing person incidents, the ability to rapidly and
accurately locate individuals can be the determining factor between life and death. Traditional search methods rely on the
deployment of darge numbers of rescuers, search dogs, and various ground and aerial vehicles, making such operations
logistically derfanding, costly, and time-consuming. In response to these challenges, unmanned aerial vehicles (UAVS)
have beconie irereaSingly utilized in SAR missions due to their capability to swiftly survey extensive areas and capture
aerial imagerynthat supports the localization of victims.

Hovvever,a significant challenge remains, as the analysis of footage captured by UAVs still largely depends on human
intefpretation, which makes the process slow and prone to errors [1]. This creates an opportunity for the integration of
artifigial intelligence, particularly deep learning techniques, which enable the automation of human detection in complex
envirbnments. Notably, models from the YOLO family, known for their high-speed and high-accuracy object detection
capabilities [2], have demonstrated substantial potential for application in SAR operations.
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Fig. 1. Examples of human detection on the H ataset using the YOLOv11 model.

The objective of this paper is to present the concept of rea i me automatic human detection, examine existing
methodologies, and discuss the advantages and limitatio such systems in practical SAR scenarios. This paper is
structured as follows. Chapter 2 provides an overvie revious research in the field of human detection for SAR
operations, presenting related works that address thisc e, the methodologies applied, and the results achieved by
various authors. Chapter 3 introduces the YOLO el architecture and describes the datasets used in this study,
which serve as the foundation for model trainin ation. Chapter 4 presents and analyzes the experimental results,
focusing on detection accuracy, model performance, and limitations observed during testing. Finally, Chapter 5
summarizes the key findings and provides €onclusions and recommendations for future research in the domain of UAV-

based human detection systems for SAR a ions.

2. Related work

Human detection from aerial imagegy represents a highly complex problem in the field of computer vision, primarily
due to the significant variability 'cts caused by different poses in which a missing or injured person may be found,
variations in clothing color, lighti ditions, and background complexity. Traditional object detection approaches have
generally been designed for @ 2ly large objects with clearly defined edges and contours. However, in images captured

erest are typically very small, and image instability caused by drone movement further

by UAVs, the objects of 4
complicates the task. %

Conventional o detection methods mainly rely on object size, texture, and shape, whereas modern approaches
often employ bi ystems that combine thermal and optical imagery to improve detection accuracy. Examples
include the works o zczak and Breckon [3] and Rudol and Doherty [4], where thermal images are used to identify
regions of elevated temperature corresponding to human silhouettes. At the same time, the optical spectrum is analyzed
using cascades @ ted classifiers with Haar-like features. Similar approaches have also been applied to the detection

irapen’ water environments using unsupervised learning techniques [5], whereas studies [6], [7] have

of swimme
proposgd @t at utilize pyramidal feature extraction in SSD architectures or a combination of color and depth
informa(x human detection.

se Of transfer learning has proven to be an extremely effective strategy in situations where the number of labeled
ited, which is a common challenge in the analysis of satellite and aerial imagery. Since collecting and
Ily ‘annotating such data is both time-consuming and resource-intensive, transfer learning enables the reuse of

ing pre-trained neural networks as a foundation for further training on domain-specific datasets. This approach
cantly improves model accuracy and generalization capabilities without the need to generate large quantities of

ew annotations or to train models from scratch [8]. For instance, in [9], a model for human detection on aerial images
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was first trained on a large, general-purpose dataset encompassing a wide range of visual characteristics, and then fine-
tuned on a smaller, domain-specific dataset, achieving high performance and better adaptation to the target environment,
Similarly, the study in [10] demonstrates that models utilizing transfer learning on larger and more generic datasets,can
outperform those trained solely on smaller, specialized datasets. These findings confirm that transferring knowledgesfrom
large-scale models enables more efficient learning in resource-constrained scenarios, establishing transfer learnifig_aswa
key technique in the field of aerial and satellite image analysis.

In Mediterranean regions, the application of thermal cameras during summer months is often constraigied"ay high
ambient temperatures, which significantly reduce the temperature contrast between the human body and the Surrounding
environment. As a result, within the IPSAR project, optical cameras were employed as the primary sensifg fodality for
image acquisition. The image processing workflow incorporated a two-stage mean-shift segmentation’ algorithm
optimized for small image segments, followed by a heuristic analysis stage designed to enhance object'distinction and
reduce noise. This approach effectively minimizes computational complexity while maintaining a lighievel of detection
accuracy.

Subsequent research efforts expanded upon this foundation by comparing system performance on compressively
reconstructed versus original images[11], as well as evaluating the impact of various saligfit detectiofalgorithms [12] on
detection reliability. Additionally, hybrid approaches combining salient detection technigués wjith convolutional neural
network (CNN)-based models [13] have demonstrated promising potential for improvings@etection robustness and
accuracy. However, these methods still face challenges related to false alarm rates and sensitivity under variable
environmental conditions, indicating the need for further optimization and adaptive ‘\model design in real-world SAR
scenarios.

Studies [14] present comparative analyses of the Score Map to ROI @lgoritfite based on deep neural network
performance and human expert accuracy across various types of SAR missions, where the Score Map to ROI algorithm
have achieved substantially higher accuracy than human evaluators. In the samg study, the best results across the four
evaluated missions were achieved in experiments where human experts‘perigrmed detection with the assistance of the
Score Map to ROI algorithm. This hybrid approach demonstrated that ¢émbining human intuition with algorithmic
guidance can significantly enhance detection accuracy and reduce falsésasitives in complex SAR scenarios.

3. Model architecture and Datasets

This chapter focuses on the fundamental components that taderpin this research's experimental framework: the
YOLOV11 object detection architecture and the aerial HERIDAL image datasets used for model training and evaluation.
Collectively, these elements form the technical foundatign foldeveloping and accessing automated human detection
systems in SAR scenarios.

The YOLOv11 model represents the latest genération @f‘the YOLO family of real-time object detection algorithms.
Building on the architecture of YOLOVS, this versiop integrates several structural and performance improvements aimed
at enhancing detection accuracy, computational efficieficy, and adaptability across diverse application domains. The
model is available in several size variants allowing researchers to balance accuracy and efficiency based on the available
computational resources. In this study, the ¥ OLOvIIn (nano) model was employed. The model processes an input image
of 640x640 pixels in only 8.64 milliseconds'an the NVIDIA Jetson Orin NX (16 GB), allowing the system to achieve
approximately 116 frames per second (FPS). This exceptional performance underscores the model’s suitability for
deployment in time-critical applications;ysuch as Search and Rescue (SAR) missions, where rapid detection and low
latency are essential for real-time decision-making.

As the foundation for model traifiing and testing, the Heridal [13] dataset was employed. This database consists of a
collection of aerial photographs/Captured by drones, depicting both rural and urban locations across Bosnia and
Herzegovina. For the purposes of #ifis study, a subset of images was selected from 11 specific locations: Blidinje, Capljina,
Goranci, Kupres, Ljubuski, Mc@ugorje, Posusje, Rakitno, Siroki Brijeg, Stolac, and Velez. The dataset’s diversity,
including both rural and urbamenvironments, and its high-resolution imagery, make it a valuable resource for developing
effective and reliable detgCtion,systems for real-world SAR scenarios.

The Heridal dataset, cofitains approximately 1,700 high-resolution images (4000 x 3000 pixels), which allows for
detailed analysis @i carnplex scenes. The complete dataset was divided into training and validation sets. To ensure
reliability and objecti¢e evaluation, the data were randomly split in an 80:20 ratio. This approach ensures that most of the
data is used for model learning, while maintaining a representative and unbiased subset for assessing model performance
on unseen samples, This dataset has been widely used in research focused on human detection in aerial imagery,
particularly in the context of SAR operations. It enables the development and evaluation of various deep learning models,
including YORQ-based models for real-time detection, ensemble approaches to improve detection robustness, and
transfef learhing techniques that leverage pre-trained models adapted to the specific characteristics of aerial images.

4. Restilts
J e, proposed model was trained on images with resolutions of 640px and 1024px. The experimental results show

that, in both experiments, a stable and prosperous learning process was achieved over 50 epochs, as evidenced by the
coftinuous reduction in the loss function and a significant improvement in performance metrics, both in precision and
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recall, as summarized in Table 1. The key metric, mMAP@0.5, reached a value of 66.11% at the end of training on 640px
images, and 78.33% on 1024px images, indicating a solid foundational ability of the model to identify objects and plaag
bounding boxes with acceptable accuracy.

Despite this success, a more detailed analysis reveals notable weaknesses. The model’s performance drops sharply at
stricter loU thresholds, as reflected by the low mAP@0.5-0.95 values of only 26.60% on 640px images and 4066% on
1024px images. This indicates a significant issue with object localization precision, i.e., placing highly accurate baénding
boxes. However, for application in SAR missions, precise bounding box placement is not critical.

Epoch Precision Recall MAP50 mMAP50-95
640px | 1024px | 640px | 1024px | 640px | 1024px | 640px | 1024px
10 51.20 52.65 44.69 54.07 41.64 47.12 13.37 19.93
20 56.01 56.88 51.85 56.60 47.92 62.60 16.16 277%0
30 54.92 53.03 55.18 55.93 49.38 65.57 17.13 20.94
40 57.08 72.69 61.11 70.74 58.46 71.65 19,97 30.41
50 64.53 74.85 68.05 78.89 66.12 78.33 26.60 40.66

Table 1. Performance metrics during training on images with resolutions of 640 and,1924px per epoch.

For model validation, a set of 147 images from the HERIDAL database was selected,sontaining 270 instances of the
“Human” class. Fig. 2 shows an example of successful human detections in a vefyz€emplex environment, demonstrating
the model’s ability to accurately identify targets despite challenging background egnditions. Two experiments were
conducted. In the first experiment, the input image to the model was 640 px,‘and:ifthe second, 1024 px, given that the
original images from the HERIDAL database have dimensions of 4000x3000 piXels. The results of these experiments are
presented in Table 2.

Precision Recall F1
640px 1024px 640px 1024px% 640px 1024px
71.9 68.8 63.3 35,6 67.3 76.2

Table 2. Comparison of performance metrics T@ximage resolutions of 640 and 1024px.

The analysis of the results on validation set indicatessa notably high proportion of false negative detections.
Specifically, 99 out of 270 actual instances of the “Humaii’ class were missed in the 640px images. This elevated miss
rate, which directly corresponds to a recall of 63.3%, represents the primary limitation of the model. In contrast, the recall
on the 1024px images reaches 85.6%, marking assubstantial improvement of 22.3%. This significant increase
demonstrates that the model benefits considerably ftom ligher-resolution input, leading to more accurate detection of
actual objects.

B o 3 S &7 4 _r‘ﬂA $e o T o
Fig. 2 An‘éxample of successful detections in a very complex environment

While the transition tofhigher-resolution images improved recall, it also increased false positive detections, rising from
67 to 105. However gthe overall detection performance, as measured by the F1 score, and the considerable improvement
in recall outweighgtthis flrawback. The tendency toward false positives suggests that the model adopts a more “aggressive”
detection strategy, ainding to identify every potential object, a behavior commonly observed in models optimized for high
recall.

The disparity ihyfalse negatives, 39 for 1024px images versus 99 for 640px images, highlights one of the model’s key
challenges. A'detalledl examination reveals that the root cause of these limitations lies in the dataset’s inherent
characteristicswAnalysis of the bounding box size distribution confirms that the model is trained predominantly on
extremiely small objects. Detecting and localizing such small objects is an inherently difficult task, which partially
explains theyeduced recall at lower resolutions and the increased number of false negatives.

Thesesobservations underscore the importance of image resolution in object detection tasks and suggest that higher-
resolutichvinputs enable the model to capture fine-grained features necessary for accurate localization and classification
better:
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5. Conclusion

This study highlights the critical role of input image resolution in achieving accurate human detection for Search,and
Rescue (SAR) operations. The results demonstrate that the model’s recall improves markedly from 63.3% at 6404x to
85.6% at 1024 px, underscoring the importance of high-resolution inputs for reliable detection. While higher resgiutions
led to a slight increase in false positive detections, the overall F1 score of 85.6% and substantial gain in recall 6£22.8%
validate the effectiveness of this approach. Error analysis reveals that the primary challenge lies in detecting’very small
objects, as represented in the HERIDAL dataset. These limitations are particularly evident at lower resolutions, where a
higher incidence of false negatives reduces overall performance.

Despite the increase in false positives, the model adopts a more “aggressive” detection strategy aimedatddentifying
all relevant objects—a strategy particularly beneficial in SAR applications, where maximizing the(detegtion of actual
targets outweighs the cost of occasional false alarms. In summary, these findings confirm that optirlizifig,input resolution
and carefully balancing recall and precision can significantly enhance model performance, supparting the practical
deployment of human detection systems in complex and hazardous environments.

One of the future goals of this research is to create a more robust image dataset that ipCludes diverse SAR scenarios,
such as poor daytime light conditions or snow and other challenging environments, whictiar€ currently underrepresented
in the official HERIDAL dataset. Another goal is to integrate multiple sensors to improve deteation in difficult conditions,
such as low-light or poor daytime illumination.
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