35TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

DOI: 10.2507/35th.daaam.proceedings.041

SERVERLESS ARCHITECTURE AND SECURITY

Marko Harambasa, Karlo Josic & Matej Basic*

This Publication has to be referred as: Harambasa, M[arko]; Josic, K[arlo] & Basic, M[atej] (2024). Serverless
Architecture and Security, Proceedings of the 35th DAAAM International Symposium, pp.0299-0305, B. Katalinic (Ed.),
Published by DAAAM International, ISBN 978-3-902734-44-0, ISSN 1726-9679, Vienna, Austria

DOI: 10.2507/35th.daaam.proceedings.041

Abstract

This paper explores the serverless architecture, detailing its key components, benefits, and security concerns. It contrasts
two main types: Function as a Service (FaaS) and Backend as a Service (BaaS), highlighting how they allow for building
applications without the need for managing underlying servers. The paper continues into serverless architecture's
operational and financial benefits, such as scalability, reduced maintenance, and cost efficiency. Security challenges
unique to serverless computing are examined, stressing the importance of adopting robust security measures like
comprehensive monitoring and logging to mitigate risks. The paper discusses the inherent security benefits of serverless
computing, including minimised attack surfaces and automated updates. It outlines best practices for ensuring secure
serverless environments, such as secure coding, stringent access controls, data encryption, and continuous monitoring.

Keywords: Serverless; Function as a Service (FaaS); Backend as a Service (BaaS), network security.

1. Introduction

In the last few years, serverless architecture has become the revolutionary approach in cloud computing, providing a
way to build and deploy applications and services without the need to know and configure the underlying infrastructure.
The heart of the serverless architecture is deploying the code in response to events, which means the application is running
only when needed, eliminating the need for traditional server management. Two key concepts are Function as a Service
(FaaS) and Backend as a Service (BaaS). FaaS focuses on executing code in response to some action or events, while
Baa$S provides automated backend services [1].

These two approaches speed up the development life cycle, providing quicker feature release and application updates.
The serverless architecture can be used with today's three most extensive serverless technologies: AWS Lambda, Azure
Functions, and Google Cloud Functions. Those three serverless technologies are also called functions since the serverless
architecture combines multiple small functions. All other resources on the internet that we are using have some pros and
cons, some of which are serverless. This paper will cover all the excellent and tricky parts of serverless architecture, such
as scalability and cost-efficiency, and critically examine the security landscape unique to serverless environments [2].
Serverless architecture inherently enhances development agility by abstracting the complexity of the underlying
infrastructure, allowing developers to focus more on coding than operational concerns. However, it also introduces
challenges in monitoring and debugging because traditional tools are often not equipped to handle the ephemeral nature
of serverless components.

- 0299 -

35TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

The paper aims to provide a comprehensive examination of serverless architecture, focusing on its advantages and
challenges. In the paper, we will present the benefits of serverless architecture, including its scalability, cost-efficiency,
and ability to speed up the development life cycle and compare the most extensive serverless technologies: AWS Lambda,
Azure Functions, and Google Cloud Functions.

2. Core Components of Serverless Architecture
Serverless architecture is a cloud computing model where the cloud service provider dynamically manages the
allocation of machine resources. In a serverless architecture, developers focus on writing code without worrying about

the underlying infrastructure, such as servers or virtual machines [3]. Figure 1 shows the Serverless Architecture diagram
from a high-level design view.

.

API
Gateway

Microservice
Architecture

Underlaying
infrastructure

Fig. 1. Diagram of Serverless Architecture
2.1. Function as a Service (FaaS)

“FaaS” is the heart of the serverless architecture, allowing developers to write and deploy code executed in response
to events without the complexities of managing the underlying infrastructure. Focusing on the individual functions and
excludes servers entirely. There are a few steps to how “FaaS” works:

o Event-Driven Execute: functions are invoked by specific events, for example, HT TP requests, file uploads, or database
operations

o Stateless Functions: each function call is treated as an independent event, with no shared state between executions

o Scalability and Auto-Scaling: as the demand or workload increases, more instances of the function are automatically
created to handle the load

e Micro billing: billing is based on the actual usage, typically calculated as a combination of the execution time and the
number of times the function is triggered.

2.2. Backend as a Service (Baas)

Backend as a Service (BaaS) is a cloud computing model that provides backend services and functionalities to
developers without requiring them to manage the underlying infrastructure. In the context of serverless architecture, BaaS
offers pre-built backend services, such as databases, authentication, file storage, push notifications, and user management,
which developers can easily integrate into their applications.

- 0300 -

35TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

The roles the "BaaS" involved in the serverless architecture:

e Managed Backend Services: The cloud provider manages several backend services BaaS offers, including database
administration, user authentication, cloud storage, and server-side logic

e Emphasis on Frontend Development: Since the service provider handles the backend of apps when using BaaS,
developers may concentrate more on creating the front end of their projects

e Integration with FaaS: BaaS and FaaS are frequently combined to provide a complete serverless architecture, with
BaaS managing standard backend operations and FaaS handling business logic in response to events.

2.3. Key Players and Technologies

Several major companies dominate the serverless market and provide reliable FaaS and BaaS solutions:

e One of the first offerings is AWS Lambda (Amazon Web Services), which enables running code without the need to
provision or manage servers. Its seamless integration with other AWS services enables a serverless architecture

e Microsoft Azure's Azure Functions: Provides event-driven serverless computing that seamlessly integrates into the
more extensive Azure network of services

e Google Cloud Functions: A fully managed environment within the Google Cloud Platform runs code in response to
events. It is a scalable, pay-as-you-go function as a service solution [4].

3. Benefits of Serverless Architecture

Serverless architecture presents many advantages, such as minimised operational burdens, enhanced cost-
effectiveness, scalability, and expedited time-to-market. It is a compelling option for numerous organisations developing
contemporary and scalable applications.

3.1. Cost Efficiency in Serverless Architecture

Cost efficiency is the most valuable thing when implementing serverless architecture. That stood out from the unique
billing model and reduced operational costs. It allows us to optimise the price of the architecture at the minimum level.
Nowadays, there are different types of cost models for serverless architecture:

e Pay-Per-Use Billing Model: Unlike traditional architectures, where resources are paid for regardless of use, serverless
computing follows a pay-per-use model. Costs are incurred based on the number of executions and the duration of the
code execution, down to the millisecond. This granular billing approach means no charge if a function is not running.

e Reduced Infrastructure Costs: Since the cloud provider manages the infrastructure, organisations save on the costs
associated with provisioning, maintaining, and scaling physical servers or virtual machines

o Decrease in Over-Provisioning: Serverless computing eliminates the need for guesswork in capacity planning [5].

3.2. Scalability and Performance

After cost considerations, scalability and performance are the primary focal points in an application’'s development.
The application must function consistently, whether accessed by a single user or thousands. In serverless architecture,
there is a couple of stuff that is different from traditional architecture, such as:

e Automatic Scalability: Serverless functions automatically scale depending on the workload. This means that during
periods of high demand, the architecture can scale up seamlessly to handle the increase in requests and scale down
during low-demand periods, ensuring efficient resource utilisation.

e Performance Optimization: The underlying serverless computing infrastructure is optimised for performance. Cloud
providers continually upgrade and maintain their systems, ensuring serverless functions run on high-performance
computing resources.

o Instantaneous Scaling: The ability to instantly scale up or down in response to incoming requests ensures that
serverless applications can maintain performance levels regardless of the number of requests they receive.

3.3. Maintenance and Operational Efficiency

Maintenance and Operations are necessary for ongoing server upkeep and slashing expenses linked with hosting
applications. This technology empowers businesses to trim server maintenance costs, enhancing efficiency and scalability.
While serverless computing eliminates hardware expenses tied to conventional web servers, there might still be some
operational overhead related to overseeing serverless applications, such as configuring logging and monitoring metrics
from various origins. Over recent years, serverless computing has become a preferred solution for bespoke software
developers. It reduces maintenance and improves operation efficiency in server ways, such as:

- 0301 -

35TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

e Reduced Maintenance Overhead: With the server management and operational responsibilities shifted to the cloud
provider, developers and IT teams are freed from routine maintenance tasks such as patching, updating, and managing
server health

e Focus on Core Product Development: Thanks to this infrastructure management offloading, organisations may refocus
their attention and resources on core product development and innovation instead of being mired in operational issues.

4. Security in Serverless Architecture

Since serverless users work with cloud providers, they shift their security responsibility to them. In deploying
serverless applications, we keep control over most of the stack to our cloud provider, and they provide services such as
key management. No longer own OS hardening, admin rights, SSH, and segmentation. Cloud providers are reliable in
keeping their parts of the stack patched and secured, so giving them a more significant portion of the stack certainly
improves things. Additionally, the temporary, stateless nature of serverless computing makes the attacker’s liver harder.
Serverless functions like AWS Lambda run for a few seconds and then die, and containers get recycled. The faster
serverless function comes and goes, the less memory is required, and having no memory reduces the risk of long-term
attacks. The fact that serverless applications are structured as a more significant number of small functions in the cloud
provides a fantastic opportunity for security. Application security tools often go to incredible lengths to analyse and
instrument our packaged application to observe or filter the internal flow of applications. Moving to smaller microservices
enables more fine-grained IAMs. The opportunity to apply security policies to each of those small things can significantly
reduce the attack surface. In serverless architecture, security assumes a different dimension than traditional server-based
setups. While the cloud provider manages the infrastructure’s security, application-level security, particularly the code
and data, essentially remains the developer's responsibility.

Security in serverless architecture encompasses various crucial topics to protect data, applications, and resources.

Some critical issues include:

¢ Shift in Security Responsibility: The serverless model shifts specific security responsibilities to the cloud service
provider. However, this means only some security concerns are outsourced. Issues like application vulnerabilities,
data encryption, and access controls still need vigilant management.

e Unique Security Context: Serverless functions are stateless and ephemeral, meaning they do not traditionally persist.
Their transient nature requires a different approach to monitoring and securing them than persistent server
environments [6].

4.1. Common Security Challenges

In serverless architecture, several common security challenges must be addressed to ensure the robust protection of
applications and data. Here are some of these challenges:

e Third-party Dependencies: Third-party libraries and APIs are frequently used by serverless applications. Each
external component introduces potential vulnerabilities. It is essential to make sure these dependencies are current and
safe

e Insecure Serverless Deployment Configurations: Security vulnerabilities in serverless apps might arise from
deployment errors. These include failing to establish appropriate authentication and permission procedures, having
too liberal access rights, and not keeping enough logs.

¢ Vulnerabilities in Application Code: Since serverless computing strongly emphasises function execution, security
breaches may result from any weakness in the code, including injection errors or incorrect exception handling

¢ Limited Monitoring and Visibility: Standard monitoring solutions might also not work in a serverless system. The
monitoring services the cloud provider provides where the serverless is hosted can enable the logging application.

¢ Risks of Denial of Service (DoS): Even if serverless architecture can handle heavy loads, DoS attacks can still occur.

These attacks could cause many function executions, resulting in significant costs and possible service degradation.
4.2. Serverless Security Threats

While attackers may still leverage similar motivations, they will employ different tactics when targeting serverless
applications, as these applications are architecturally different from those we're used to. Below are the specific security
risks inherent to this novel application architecture.
4.2.1. The Threat of Over-Privileged Functions

With serverless applications, applying permissions to specific functions and ensuring those privileges are limited to

the bare minimum is possible. It will be able to lessen the impact of any strike and drastically reduce the attack surface
by doing this. Regretfully, a recent Check Point study revealed [7] that few developers utilise this possibility.

- 0302 -

35TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

According to analysis, 16% of serverless application tasks are deemed “serious,” and 98% of functions are in danger.
Additionally, to increase the security of the function and the application, most of these functions could have their
permissions granted less than necessary. Check Point rates the risk associated with each function it analyses. That is based
on the identified posture flaws, considering the type of weakness and the environment in which it manifests. Tens of
thousands of functions in live applications were scanned, and the results showed that most serverless apps are just not
implemented as securely as they should be to reduce risks, something that OWASP (The Open Worldwide Application
Security Project) controls mention more than a few times in their top 10 list. Check Point found that unnecessary
permissions are the main security posture problems; the remaining issues are insecure code and setups.

4.2.2. The Groundhog Day Attack

Attackers find it harder to stay in applications over time since serverless functions are transient and fleeting. Attackers
will still carry out attacks; their tactics will vary, making their lives more difficult. Because serverless functions have a
short lifespan, serverless security risks could evolve. An attacker might create a far shorter attack that only takes a little
information, such as a few credit card numbers. What is known as the "Groundhog Day" attack is a single attack round
that keeps repeating itself.

4.2.3. Poisoning the Well

Despite the short lifespan of cloud-native resources, attackers can still establish long-term application persistence.
They achieve this by exploiting a technique known as "Poisoning the Well," which circumvents the transient nature of
serverless apps. Cloud-native applications often comprise multiple modules and libraries with code sourced from various
third-party providers. Attackers aim to insert malicious code into these applications. Subsequently, the malicious code
can communicate with its source, receive instructions, and wreak havoc after poisoning the well [8].

5. Security Best Practices for Serverless Architecture

Like any other technology, serverless architecture is not immune to vulnerabilities. Therefore, it's crucial to minimise
risks as much as possible. Implementing best practices for serverless architecture, also recommended by cloud providers,
is essential in achieving this goal.

5.1. Use API Gateways as Security Buffers

The most common protocol for communication between the client and server is HTTP protocol. The function
shouldn’t be exposed directly to the front end; it must be wrapped using the APl gateway service. Using APl HTTPS
endpoint gateways to divide data from functions is one technique to stop event-data injection in serverless apps. An API
gateway will serve as a security buffer when data is collected from various sources, separating app users on the client side
from serverless functions on the backend. Implementing a reverse proxy to provide several security checks lowers the
attack surface. Built-in security measures, such as data encryption and key management provided by the provider, can be
used by HTTP endpoints. These measures help to protect sensitive data, environment variables, and stored data.

5.2. Data Separation and Secure Configurations

Implementing preventive measures such as code scanning, isolating commands and queries, identifying any exposed
secret keys or unlinked triggers, and configuring them according to the recommended practices by the CSP's serverless
application are vital strategies to thwart DoS attacks. Additionally, to mitigate the risk of DoS attacks disrupting execution
calls, setting function timeouts as low as possible is advisable.

5.3. Dealing with Insecure Authentication

Implementing various specialised access control and authentication services is crucial to minimise the likelihood of
authentication failures. Leveraging the CSP's access control solutions, such as OAuth, OIDC, SAML, OpenID Connect,
and multi-factor authentication (MFA), can enhance the complexity of authentication, making it more difficult to
compromise. Additionally, imposing unique password complexity requirements, including character type and length
constraints, impedes hackers' attempts to crack passwords.

5.4. Sufficient Serverless Monitoring and Logging
Monitoring and logging provide users and operators with a comprehensive view of tracking the behaviour of our

functions and workflow. Implementing monitoring and logging is essential to gain insights into every serverless
application operation.

- 0303 -

35TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

Relying solely on the CSP's logging and monitoring capabilities is inadequate as they do not encompass the application
layer. It's also imperative to consider what data is being logged, ensuring that sensitive information that should remain
undisclosed is not logged, as it could serve as an entry point for attackers.

5.5. Minimize Privileges

They diverge the functions from each other and limit their rules by provisioning IAM roles based on their rights.
Minimising the privileges in independent functions is crucial. Another way to do this would be to make sure the code
executes with the fewest permissions necessary to act.

5.6. Separate Application Development Environments

One of the most significant development practices is maintaining continuous development, integration, and
deployment (CI/CD) by keeping the different environments apart from staging, development, and production [9]. This
guarantees that appropriate vulnerability management is prioritised at every development stage before pushing that code
version forward. Additionally, it ensures that the program is continuously tested and improved by prioritising patches,
protecting updates, and detecting vulnerabilities, all of which help developers stay one step ahead of attackers.

6. Test case example

Netflix, a streaming service with 125 million customers, delivers 10 billion hours of video content each quarter. This
feat is accomplished mainly through its infrastructure, which is built predominantly on Amazon Web Services (AWS).
With hundreds of thousands of files and petabytes of data, scaling the application becomes imperative. The service reaches
millions of users across 55 countries, providing regularly updated content. Over seven years, Netflix underwent a
significant strategic transition, fully migrating to AWS cloud infrastructure. Leveraging serverless technology,
particularly AWS Lambda, has become integral to many aspects of its operations. For instance, Lambda functions are
vital in processing the vast number of video clips submitted daily, dividing them into segments, and encoding them into
the various streams required for Netflix's functionality. Additionally, Lambdas are employed in backend systems for tasks
such as verifying file integrity, creating data backups, and resolving issues with the backup process, given the substantial
number of daily file modifications. Lambda is also utilised for security purposes, ensuring that all operations, including
instance launches and terminations, adhere to established standards. It actively detects unauthorised access attempts and
notifies users accordingly. Furthermore, Netflix utilises monitoring tools provided by AWS to track application traffic,
enabling the detection of suspicious behaviour.

By embracing serverless architecture, Netflix effectively delegates server management responsibilities to the provider,
ensuring that Lambda manages server deployment, compliance, and configuration. This approach guarantees efficient
provisioning processes and rapid adaptation to evolving business requirements. Netflix has demonstrated ingenuity in
harnessing serverless technologies, particularly AWS Lambda, to manage extensive data volumes, uphold security and
compliance standards, and optimise operational efficiency within its cloud-based streaming service [10].

7. Future research

Serverless computing presents several promising scientific research areas, especially security and architecture. One
vital research direction addresses the security challenges unique to serverless models, which heavily depend on external
services and infrastructure. Studies could investigate how to adapt or redesign conventional security frameworks to suit
better the serverless environment, where the short-lived nature of functions makes traditional security monitoring and
incident handling methods less effective. This research might include developing new strategies for detecting and
addressing security threats tailored to the fleeting characteristics of serverless components.

Another critical area of research focuses on improving resource management and performance within serverless
architectures. The on-demand resource provisioning central to serverless computing introduces issues regarding efficient
resource use and the reduction of latency during function initialisation, known as cold starts. Future studies might look
into creating algorithms and architectural improvements to predict better and manage resource needs, possibly using
artificial intelligence to forecast application demands dynamically. Furthermore, there is potential for exploring how
serverless computing could be effectively merged with cutting-edge technologies like edge computing. This exploration
could enhance how computational tasks are managed and performed across hybrid architectures, significantly benefiting
applications that require immediate data processing, such as those involving the Internet of Things (10T).

8. Conclusion
Flexibility and efficiency are significant benefits that serverless architecture provides, and application to application

can handle enormous amounts of users simultaneously. Also, it speeds up the development lifecycle, providing quicker
feature releases and bug fixes.

- 0304 -

35TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

Moving risks to the cloud provided and having available cloud-supplied support is a significant improvement
compared to traditional application management, where we are responsible for the server and the infrastructure. By
controlling permissions on Lambdas to specify which services in the cloud can call them and which methods within those
services can access them, we gain complete flexibility in managing access to Lambdas. Implementing effective data
encryption, secure coding techniques, and robust identification and access controls is imperative. Monitoring and logging
play crucial roles in ensuring the security of a serverless system. The scalability and reduced operating costs offered by
serverless applications are compelling reasons many organisations adopt this approach. Serverless technology represents
the future of development and application execution, serving as an entry point into the microservices architecture, a pivotal
architectural paradigm in today's and future technological landscape.

By offloading infrastructure management to the cloud provider, serverless architecture frees up valuable time and
resources for organisations to focus on innovation and core business objectives. Developers can concentrate on building
innovative features and applications, rather than spending time on infrastructure maintenance tasks. This focus on
innovation can drive competitive advantage and differentiation in the marketplace.

9. References

[1] A. Sabbioni, C. Mazzocca, M. Colajanni, R. Montanari & A. Corradi (2022). A Fully Decentralized Architecture
for Access Control Verification in Serverless Environments, Proceedings of 2022 IEEE Symposium on Computers
and Communications (ISCC), ISBN:978-1-6654-9792-3, ISSN: 2642-7389,pp. 1-6, DOI:
10.1109/iscc55528.2022.9912764

[2] https://www.cloudflare.com/en-gb/learning/serverless/what-is-serverless/ (2013), Cloudflare, Accessed on: 2023-
11-16

[3] A. Koschel, S. Klassen, K. Jdiya, M. Schaaf & I. Astrova (2021). Cloud Computing: Serverless, Proceedings of
2021 12th International Conference on Information, Intelligence, Systems & Applications (11ISA), ISBN:978-1-
6654-0032-9, pp. 1-7 DOI: 10.1109/iisa52424.2021.9555534

[4] https://www.hitechnectar.com/blogs/baas-vs-faas-explaining-the-two-serverless-architectures/ (2023).
HiTechNectar Trending IT Analysis & Technology News, Accessed on: 2023-11-16

[5] https://www.educative.io/answers/cost-scalability-and-performance-in-a-serverless-architecture (2023). Educative:
Interactive Courses for Software Developers, Accessed on: 2023-11-16

[6] A. Serckumecka, I. Medeiros, and A. Bessani (2019). Low-Cost Serverless SIEM in the Cloud, Proceedings of 38th
Symposium on Reliable Distributed Systems (SRDS), ISBN:978-1-7281-4222-7, ISSN: 2575-8462, pp. 381-3811,
DOI: 10.1109/srds47363.2019.00057

[7] https://www.checkpoint.com/cyber-hub/cloud-security/what-is-serverless-security/ (2023). Cyber Security
Solutions, Check Point Software, Accessed on: 2023-11-16

[8] Moric, Z.; Redzepagic, J. & Gatti, F. (2021). Enterprise Tools for Data Forensics. Annals of DAAAM &
Proceedings, 10(2), Published by DAAAM International, ISBN 978-3-902734-33-4, ISSN 1726-9679, Vienna,
Austria, DOI: 10.2507/32nd.daaam.proceedings.014

[9] Daki¢ V.; Redzepagi¢ J.; Basi¢ M. (2022). CI/CD Toolset Security, 33rd DAAAM International Symposium on
Intelligent Manufacturing and Automation, Published by DAAAM International, ISBN 978-3-902734-36-5, ISSN
1726-9679, Vienna, Austria, DOI: 10.2507/33rd.daaam.proceedings.022

[10] https://dashbird.io/blog/serverless-case-study-netflix/ (2023). Dashbird blog, Accessed on: 2023-12-28

- 0305 -

	041

