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Abstract 

Object detection in outdoor environments is a challenging task. One is not only confronted with the problem of acquiring a 
sufficient amount of training images, but also the issue of huge variation in the objects appearance due to changing weather and 
light conditions. When using appearance-based object detection algorithms, such as in this paper, dimensional reduction of input 
data is an integral component to reduce computational costs and improve reliability. Based on the probabilistic classification 
method of Gaussian classifiers this paper examines the effect different dimensional reduction approaches have on the 
classification performance of thermal infra-red object images with respect to incomplete training data. It is shown that in the 
detection task at hand, which is to find the rear end of a truck in a thermal infra-red image, a reduction approach that combines 
principal component analysis (PCA) and linear discriminant analysis (LDA) is less sensitive to missing data. 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of DAAAM International Vienna. 
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1. Introduction 

In the KIRAS project RelCon [1] a reliable convoy of autonomous trucks is in development. For that purpose a 
dependable vision system is a fundamental requirement in order to track the vehicle to follow. The object detection 
that is the basis for such a system can be implemented in various ways including appearance-based approaches [2]. 
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A tracking system for vehicles in urban and unstructured environments was implemented by [3]. Their approach 
deploys one monocular visible light camera and makes extensive use of features such as Haar-like, local binary 
pattern and HOG, utilizing about 30,000 training images to acquire robust classifiers. [4] achieved fast classification 
in infra-red images by using the machine learning approach AdaBoost on about 3000 training images, deploying an 
extensive amount of computational power. The appearance-based based object detection algorithm proposed by [5] 
finds the rear end of a truck in thermal infra-red images, utilizing the Gaussian classifier. With the use of only 600 
images, the training of reliable classifiers in this approach is computationally much cheaper compared to weak 
feature classifiers (e.g. Haar-like, etc.) and AdaBoost. However, the common problem any object detection task has 
in an outdoor environment is the continuously changing appearance of objects in it, due to changing light and 
weather conditions. Obtaining a comprehensive training data set is difficult and the encounter of untrained 
conditions is always possible. 

When utilizing appearance-based approaches for classification the dimensional reduction of input images is an 
essential part of any algorithm. With it, the algorithms robustness and computational complexity can be dramatically 
improved. In this paper three different methods for dimensional reduction are examined, with special regard to the 
object detection task in the before mentioned RelCon project and its sensitivity to incomplete training data. 

This paper is structured as follows: In Section 2 the object detection task at hand is described in more detail, the 
current algorithm is explained and the different methods for dimensional reduction are given. After that, in Section 3 
the test results will be shown. Finally conclusions are drawn in Section 4. 

2. The detection task and current algorithm 

In the object detection system that is developed in the RelCon project the rear end of a truck is to be detected 
within a thermal infra-red image of the size  pixels. For training purposes a dataset of 6,682 positive 
training images, which depict the truck in different thermal conditions and environments, and 5,295 negative 
training images, showing the trucks background scenery, are available. All training images have the size:  
pixels. The positive training images are segmented in three separate datasets representing different hours of the day 
and thermal conditions, henceforth referred to as pos_1, pos_2 and pos_3. The complete negative dataset will be 
referred to as neg in the rest of this paper. Fig. 1 shows a sample of these datasets in their original resolution. 

 

Fig. 1. Training datasets (from left to right column: pos_1, pos_2, pos_3, neg). 

Within the detection algorithm that was developed in [5] new camera images are segmented into subimages of 
varying sizes between  pixels and  pixels which are scaled down to the same size as the training 
images. Subsequently all subimages are then classified by an appearance-based approach which allows the 
localization of the object within the whole camera image. 

In appearance-based object classification methods images of the size  are usually represented by a vector 
of the corresponding size . This means, however, that even with very small images all calculations necessary 
for classification have to be done in high dimensions (In case of the image sizes in this paper: 2500 dimensions). 
Dimensional reduction of this image data is crucial to reduce the computational cost and improve the robustness of 
the algorithm it is used in (avoidance of overfitting) [6]. In the current detection algorithm PCA is applied for 
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dimensional reduction [7], [8], [9]. In general PCA projects input data into an orthogonal space, according to the 
datas variance. This means that the first principal component axis points in the direction of the maximum variance 
within the data PCA is performed on, the second principal component axis points in the direction of the second 
highest variance and so on. Therefore, axes  to  have descendent discriminatory power. By selecting the first l 
principal component axes  to  a reduced PCA-space can be chosen. Data can then be projected onto this reduced 
space of l dimensions. 

For both the positive and negative dataset maximum likelihood estimators for the mean and covariance matrix 
( , , , ) can be calculated after projecting the training data into the reduced space. Each subimage 
can then be classified using the Gaussian classifier [9] (see Eq. 1) [5]: 

                                                                         (1) 

where  is class i,  is the mean image of class i,  is the covariance matrix of class i and  is the new image 
segment that is classified. The constant k is class-independent, thus identical in all classes  of this problem. New 
images are assigned to the class for which their logarithmic likelihood ( ) is largest – 
either the positive or the negative class. 

2.1. LDA and Fisherfaces 

PCA is an unsupervised algorithm, which means that it tries to find discriminatory information, without prior 
knowledge of any classes that are part of the data. On the other hand LDA is a supervised algorithm that tries to find 
a projection in which labelled data is optimally separated. To achieve this, LDA optimizes a within-class measure, 
that describes the covariance of the data of each class, and a between-class measure, which shows the relation of the 
class means (see Eq. 2, Eq. 3) [6], [8], [10]: 

                                                              (2) 

                                                                                                 (3) 

where  is the within-class scatter matrix and  is the between-class scatter matrix. The optimal projection 
matrix  can be found by solving the generalized eigenvalue problem of Eq. 4 [10]: 

                                                                                                (4) 

Many object recognition tasks suffer from the small sample size problem in which the training data set is 
significantly smaller than the dimensionality of the sample space. In case of LDA this results in a within-class 
scatter matrix  that is singular, thus its invers cannot be calculated. To tackle this problem several alternatives are 
applicable, one of which is adding a regularizing term to  making the within-class scatter matrix non-singular (see 
Eq. 5) [11]: 

                                                                                                 (5) 

where  is a small constant and  is the identity matrix. Another approach is called Fisherfaces, a term that 
originated from the research field of face recognition. At most the matrix  has a rank of , where  is the 
number of images in the training set and  is the number of classes. The idea of Fisherfaces is to first reduce the 
training data to at least  dimensions utilizing PCA. After that LDA is used to reduce the projected data further 
(see Eq. 6) [10], [12]: 

                                                                                                 (6) 
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where  is the projection onto the reduced PCA-space and  the subsequent projection onto the further 
reduced LDA-space. Together this gives the projection  which combines both PCA and LDA. 

2.2. Dimensional reduction  

In this paper 1,000 training images are used for dimensional reduction, which brings up the small sample size 
problem mentioned earlier. PCA is not affected by this, however, any reduction method utilizing LDA is and has to 
be treated accordingly. Therefore, the regularized LDA and PCA-LDA combination of Fisherfaces will be examined 
in the following. Fig. 2 shows all available training data reduced to three dimensions using different methods of 
dimensional reduction. When reducing the dimensions with PCA it can be observed, that the different datasets are 
separated clearly (see Fig. 2a), even those of the same class. This leads to the assumption, that if any of these 
datasets were missing during the training of classifiers, big errors will be made when assigning objects of the 
missing datasets to a specific class. In contrast, when utilizing LDA for dimensional reduction even datasets with 
big thermal differences that are part of the same class are forced together. It can be anticipated that in this case the 
lack of one of the positive datasets would have little effect on the classification performance. This effect can be seen 
in Fig. 2b where LDA with regularized within-class scatter matrix was used. However, a large class variance and 
quite a class overlap of negative and positive images are noticeable. The reason for this is most likely that relative 
arbitrary features are used to distinguish the positive and negative training images (see Fig. 3). Especially if a small 
training set is used for calculating the LDA-space the data variance is high after reduction. Utilizing both PCA and 
LDA for dimensional reduction, similar to Fisherfaces this variance can be significantly reduced (see Fig. 2c). Also 
the class overlap of the positive and negative class is much lower. The effect of missing training data on PCA, LDA 
and the combined PCA-LDA approach will be shown in the results section (Section 3) of this paper.  

 

Fig. 2. Training data reduced to 3 dimensions with (a) PCA, (b) LDA regularized, (c) PCA & LDA combined (Fisherfaces). 

The eigenvectors calculated with PCA, LDA and Fisherfaces can be seen in Fig. 3. The first three components, 
derived from the respective dimensional reduction methods are shown here and can also be interpreted as the 
extracted features. As it can be observed, the features of the truck are easily distinguished in the first three principal 
components (see Fig. 3a). On the other hand, the features from LDA are very noisy (see Fig. 3b). Fisherfaces also 
show noisy images, however, the contours of the truck are still recognizable (see Fig. 3c). 

 

Fig. 3. First three eigenvectors derived from (a) PCA, (b) LDA, (c) Fisherfaces. 
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3. Results 

In order to get to a valid performance study four evaluations were done in an experimental setting, in which the 
datasets mentioned in Section 2 (pos_1, pos_2, pos_3 and neg) were used. For the first evaluation 500 positive and 
500 negative randomly selected training images from all available datasets were used to derive the projection into 
lower space (PCA, LDA and Fisherfaces) and to train the Gaussian classifiers. Following this, a cross evaluation 
was conducted ignoring one positive dataset at a time. In the first cross evaluation dataset pos_1 (3,148 images) was 
neglected, again using 500 positive and 500 negative training images for dimensional reduction and classifier 
training. Similarly the second and third cross evaluations were performed, disregarding datasets pos_2 (1,571 
images) and pos_3 (1,963 images) respectively. Additionally to the standard Fisherface method the training data was 
not only reduced to  dimensions (998 in this study) before applying LDA, but also to 500, 250 and 100 
dimensions. They are labelled Fish (998), Fish (500), Fish (250) and Fish (100) in the following Tables 1 to 4. 

Tab. 1 shows the number of classification errors (number of images assigned to the wrong class: false positives, 
false negatives) made in each dataset when reduced to three and 20 dimensions. As it can be seen in higher 
dimensions the classification performance of all dimensional reduction methods are similar. However, if the data is 
reduced to low dimensions the classification performance is significantly better with an approach that uses LDA.  

      Table 1. Evaluation 1 (errors in 3 dim. / 20 dim.). 

dataset PCA LDA Fish (998) Fish (500) Fish (250) Fish (100) 

pos_1 213 / 10 29 / 2 17 / 9 16 / 8 15 / 8 14 / 7 

pos_2 0 / 11 29 / 18 20 / 10 18 / 13 19 / 11 15 / 0 

pos_3 227 / 0 27 / 7 19 / 5 6 / 4 7 / 4 10 / 3 

neg 238 / 14 31 / 16 17 / 5 0 / 1 0 / 3 5 / 7 

In Tables 2, 3 and 4 the results of the cross evaluations are shown. In this study PCA seems to be most sensitive 
to the lack of dataset pos_1 (see Tab. 2). If this set is disregarded almost all images within this set are misclassified 
when reduced to three dimensions. Even with 20 dimensions the about 30 % of all images in this set are assigned to 
the wrong class. With regularized LDA this can be improved significantly to a misclassification rate of around 10 % 
in three and about 13 % in 20 dimensions. The Fisherface method outperforms PCA, especially with highly reduced 
data. Standard Fisherfaces bring the misclassification rate down to about 12 % in three dimensions and to about 8 % 
in 20 dimensions. If the data reduction with PCA is intensified and images are reduced to less than 998 dimensions 
before using LDA, the classification performance can be improved even further. The best results in this test are 
achieved by projecting the training images into 500 dimensional PCA-space before applying LDA. Here the error 
rate is diminished to around 5 % in three dimensions and about 3 % in 20 dimensions.  

  Table 2. Cross evaluation 1 (errors in 3 dim. / 20 dim.). 

dataset PCA LDA Fish (998) Fish (500) Fish (250) Fish (100) 

pos_1 3,125 / 693 326 / 402 379 / 278 162 / 95 106 / 156 64 / 552 

pos_2 45 / 0 19 / 11 15 / 10 9 / 7 16 / 6 11 / 0 

pos_3 18 / 0 6 / 4 7 / 1 1 / 1 1 / 1 1 / 1 

neg 513 / 1 11 / 1 7 / 1 1 / 2 2 / 0 3 / 2 

With cross evaluation two (see Tab. 3), where training set pos_2 is neglected, PCA has a relatively high 
misclassification error of around 21 % in 20 dimensions within the disregarded dataset. Surprisingly the error rate in 
3 dimensions is only 1.5 %. When utilizing LDA alone, the error rate improves significantly to only about 4 % in 20 
dimensions. The combined PCA-LDA approach lowers the classification error rate to below 6 % in all tested 
configurations. With a PCA reduction to 250 dimensions before using LDA, the misclassification rate is reduced to 
only about 2 %. 
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      Table 3. Cross evaluation 2 (errors in 3 dim. / 20 dim.). 

dataset PCA LDA Fish (998) Fish (500) Fish (250) Fish (100) 

pos_1 80 / 4 20 / 4 9 / 5 6 / 3 5 / 2 5 / 3 

pos_2 26 / 329 72 / 65 75 / 87 87 / 69 84 / 39 90 / 72 

pos_3 11 / 0 10 / 7 11 / 8 11 / 11 10 / 8 7 / 8 

neg 66 / 0 26 / 7 16 / 4 3 / 7 3 / 6 8 / 14 

In the third cross evaluation (see Tab. 4), surprising results were encountered in higher dimensions. Using PCA 
all images from dataset pos_3 are assigned to the wrong class in three dimensions. However, the error is reduced to 
only 1.5 % in 20 dimensions. LDA has an error rate of about 20 % in three and 10 % in 20 dimensions. Also the 
Fisherface approach performs worse than PCA in high dimensions, with error rates between 10 % and 3 %. 

   Table 4. Cross evaluation 3 (errors in 3 dim. / 20 dim.). 

dataset PCA LDA Fish (998) Fish (500) Fish (250) Fish (100) 

pos_1 74 / 2 49 / 10 34 / 7 14 / 8 14 / 5 13 / 4 

pos_2 11 / 7 84 / 35 76 / 12 24 / 13 23 / 9 3 / 0 

pos_3 1,963 / 30 389 / 185 210 / 91 164 / 142 191 / 104 265 / 50 

neg 77 / 2 22 / 7 12 / 4 1 / 3 3 / 6  1 / 13 

The evaluations show that LDA and Fisherfaces are more consistent than PCA, when confronted with incomplete 
data. This corresponds with the results in [12], investigating dimensional reduction methods in visible-light face 
recognition under variable illumination. Taking the cross-evaluation results into account, tests were carried out in 
the object detection algorithm at hand using complete and incomplete training data. The training data was reduced to 
20 dimensions by PCA, regularized LDA and the Fisherfaces method. For the Fisherfaces approach the data was 
first reduced to 250 dimensions with PCA, before being reduced to its final 20 dimensions with LDA. 

Fig. 4 shows the output of the object detection algorithm, with the object detected by the algorithm marked by a 
white square and the number 0. All other matches, that where declared as positive matches, but have a lower 
logarithmic likelihood (compare Eq. 1) are marked with black squares and are numbered according to their score. 

 

Fig. 4. Found matches in object detection algorithm with projection space (a) PCA, (b) LDA, (c) Fisherfaces (250). 

As it can be seen the algorithm working with PCA shows very few false positive matches. Except the final match 
only two other possible matches are found (see Fig. 4a). Using the pure LDA approach the detection results show a 
significant increase of false positive detections (see Fig. 4b). This is most likely due to the before mentioned relative 
arbitrariness of the features used in LDA to distinguish positive and negative samples. Using only LDA to reduce 
images is feasible in this application since the best match is still the truck. However, the matches the algorithm finds 
are distributed much wider than with the algorithm relying on PCA only, which makes the accuracy of this approach 
very poor. Finally the combined dimensional reduction approach shows more false positive matches than the 
approach using only PCA but less than with pure LDA. All declared matches contain the truck and a convergence of 
the different sized matches towards the final match can be observed (see Fig. 4c). 



1173 David Spulak et al.  /  Procedia Engineering   100  ( 2015 )  1167 – 1173 

When using classifiers that were trained with incomplete data (e.g. without dataset pos_1) tests show, that the 
performance of the algorithm using Fisherfaces for dimensional reduction is hardly influenced. The reliability of the 
object detection is practically the same, even in images of untrained thermal conditions. Similarly, but less accurate, 
the regularized LDA approach also performs almost identically with and without dataset pos_1. On the other hand, 
the detection performance is strongly reduced when pure PCA is used for data reduction. The already poor object 
detection rate is highly dependent on the number of subimages the whole image is fragmented into. Increasing the 
number of subimages improves the detection rate slightly but significantly raises the computational requirements of 
the algorithm. The results of the Fisherface approach cannot be matched. 

4. Conclusion 

In object detection tasks dealing with the unstructured, ever-changing outdoor environment, getting a 
comprehensive representation of all possible situation in the form of training data is difficult. Therefore, depending 
on how representative the training data is, compared to the conditions likely to encounter, knowledge of how 
different dimensional reduction methods deal with incomplete data is essential. The effects these methods have on 
appearance-based object classification in infra-red images were examined in this paper. Special focus was put on the 
algorithms performance when confronted with incomplete training data due to changing thermal conditions of the 
environment. For classification the Gaussian classifier was used. 

It shows, that a combined approach using both PCA and LDA for dimensional reduction, the so-called 
Fisherfaces, is less sensitive to changing thermal and weather conditions in infra-red images and therefore more 
reliable when the problem of incomplete training data is encountered. However, if the data is complete, the results of 
the algorithm using PCA for data reduction is more reliable. Determined by the confidence the designer of an object 
detection algorithm has in the completeness of his training data, either PCA or Fisherfaces should be used to achieve 
the best possible results. The next steps regarding the detection task at hand will be further test on the real system in 
order to determine how general the collected training data is and which dimensional reduction method to put to use. 
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