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Abstract 

The implementation of statistical control charts under autocorrelated situations is a critical issue since it has a significant impact 
on the monitoring capability of manufacturing processes. The objective of this study is to assess the performance of control 
charts under different scenarios and to optimize the design of control charts to best deal with autocorrelated processes. To 
achieve the proposed objective, two autoregressive integrated moving average models, ARIMA (1, 0, 1) and ARIMA (0, 1, 1), 
are utilized to characterize stationary and non-stationary processes. These process models were simulated to achieve the 
response, average run length (ARL), which is the performance measure of this study. The factorial design of experiment was 
conducted to quantify the effect of critical factors, i.e., ARIMA coefficients, types of charts (exponentially weighted moving 
average: EWMA and moving range: MR) and shift sizes on the ARL. The experimental results show that EWMA chart is the 
most appropriate control chart to monitor autocorrelated observations. Additionally, both AR and MA parameters along with 
shift sizes have a significant effect on the performance of control charts. Therefore, this study has pointed out a suitable tool for 
use under the different scenarios of autocorrelation. The validation of the above experimental results was conducted on another 
ARIMA model, ARIMA (1, 0, 0).  If the performance of control charts under autocorrelated disturbances is correctly 
characterized, practitioners will have guidelines for achieving the highest possible performance potential when deploying SPC. 
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1. Introduction 

Statistical process control (SPC) is a methodology used for monitoring and reducing the variation in 
manufacturing processes and the main tools of SPC are control charts. Normally, SPC works under the assumption 
that observed data is independent. However, because of the advanced measurement technology, shortened sampling 
interval and the nature of processes, especially in continuous processes, e.g., chemical processes, the independence 
of each observation has been violated in many scenarios. The lack of independence among each sample usually 
comes in the form of serial autocorrelation. The behaviour of process outputs significantly deteriorates the 
performance of control charts. Therefore, the consequence is that control charts signal fault alarms more often or 
does not signal when there is a shift. The selection of inappropriate type of control chart in this scenario might lead 
to the excessive number of false alarms or the losing ability to detect a special cause. As a result, the characterization 
of widely used control charts was performed in order to understand the characteristics of each control chart under the 
autocorrelated situations. 

2. Literature review 

According to the literature, there are many authors suggesting different approaches to solve the autocorrelation 
issues of SPC. These options include non-standard SPC charts and some sophisticated techniques which are difficult 
for practitioners to implement in real-life situations. As a result, the object of this study focuses on selecting the 
available quality tools that most practitioners are familiar with and they are simple for them to use. However, the 
characterization of these tools under autocorrelation situations should be fully understood. The first step leading to 
the performance characterization of standard charts is the capability to simulate different types of autocorrelation. 
Under normal and uncorrelated conditions, the process model has a fixed mean ( ), and the fluctuation around the 
mean is the result of white noise (at). However, when observations are correlated, the correlation structure and drift 
in the mean are characterized by disturbances. If process observations vary around a fixed mean and have a constant 
variance, this type of variability is called stationary behavior. Otherwise, the behaviour is non-stationary. MacGregor  
[1] indicates that there are two types of disturbances, deterministic and stochastic disturbances. Stochastic 
disturbances are random and might be stationary or non-stationary so it is the main source of autocorrelation in the 
data. Basically, deterministic disturbances are in the form of step shifts or ramp in the process mean. On the other 
hand, a stochastic difference equation is utilized to forecast one-step ahead disturbances [2]. These are represented 
by autoregressive integrated moving average models, ARIMA, as shown in (1). 

 
qtqttptdptdtdtd aaaYYYY ... ... 112211                                                                                  (1) 

 
The ARIMA (p, d, q) model indicates p as the order of the autoregressive part, d as the amount of difference and 

q as the order of moving average part. As recommended by [2], ARIMA (1, 0, 0) and ARIMA (1, 0, 1), are likely to 
be the most suitable models to represent stationary processes while ARIMA (0, 1, 1) is the appropriated choice for 
non-stationary processes. Therefore, several authors ([3], [4], [5], [6], [7]) have raised an interesting remark that 
traditional chart (Shewhart), exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) 
chart, might have a better performance than non-standard charts when data is correlated.  As a result, there are a 
number of works carried out to implement standard charts with correlated processes simulated by ARIMA models.  
ARIMA (1, 0, 1) is one of the models which is used to simulate autocorrelated data in order to assess the 
performance of traditional charts when the tested data is modeled by ARIMA (1, 0, 1) [8]. According to their work, 
average run length (ARL) was used to measure the robustness of designated chart. Moreover, the performance of 
each standard chart was also assessed by benchmarking with each other. One of these works is the performance 
comparison of X and EWMA chart [9]. The objective is to assess the capability of each chart to detect special 
causes when the data is autocorrelated. Another approach to improve the performance of standard charts is to filter 
correlated data with ARIMA models and the residual from filtering process is monitored by selected control charts.  
This technique is used to monitor the residual based data with EWMA chart [10]. 
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In some cases, the actual data is utilized instead of the simulated data and these sets of data are acquired from 
different sources. For example, two different charts (CUSUM and EWMA) were used to monitor the autocorrelated 
data collected from a production process [11]. Another type data used to benchmark control charts is the biochemical 
quality data [12]. The application of SPC and autocorrelated data is not limited to only industrial data but 
information technology data as well. For example, EWMA chart is applied to detect analogous changes in the event 
intensity for intrusion detection while the data is correlated and simulated by deploying ARIMA (1, 0, 0) model [13]. 

In conclusion, SPC charts are widely utilized in different areas which are not limited to only the industrial area 
but also other fields. However, the critical problem is that the autocorrelated data usually downgrades the 
performance of SPC significantly. As a result, a number of studies are introduced to solve this problem but the 
downside of these approaches is their complication or not friendly use for people on the shop floor. For this reason, 
the utilization of these techniques might not be suitable to practitioners who are familiar with traditional standard 
charts. The objective of this study is the use of empirical study for characterizing the performance of standard charts 
so practitioners will have the guidelines for deploying available charts to monitor the autocorrelated data at its best.  

3. Research Procedures 

The basis of analysis in this paper is a mathematical model used to study the effects of process autocorrelation on 
the performance of SPC charts. Process disturbances are controlled by adjusting the level of autocorrelation in the 
form of ARIMA parameters. Moreover, the situation could be more complicated when there is a special cause. As a 
shift occurs in the process, moving range (MR) and exponentially weighted moving average (EWMA) charts are 
utilized to monitor the individual measurement of a process mean to detect a shift. The autocorrelated process in this 
study is a continuous process with only one quality characteristic, represented by Y. The evaluation of control chart 
performance is measured by considering the average run length (ARL) which is the average number of points plotted 
before a point indicated an out-of-control state. The schematic presentation of process model is shown in Fig. 1. 
 

 

Fig. 1. process model. 

The observation of a process is considered from period 1 to 550 (t = 1, 2, 3,…, 550) and the process output ( 1tY ) 
is equal to 

 
)(11 tNTY tt                                                                                                                                                  (2) 

 
The source of autocorrelation is process disturbances, characterized by the autoregressive moving average model, 

ARIMA (1, 0, 1) and ARIMA (0, 1, 1), as shown in (3) and (4): 
 

tttt aaNN 11                                                                                                                                                     (3) 
 

tttt aaNN 11                                                                                                                                                   (4) 
 

where tt NN ,1  are the disturbances at time t+1 and t, tt aa ,1  are the random errors at time t+1 and t,  is the 
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autoregressive (AR) parameter and  is the moving average (MA) parameter. The values of  and  are between -1 
and 1. Afterwards, MR and EWMA charts are utilized to monitor the autocorrelated observations.  

To simulate a special cause, a shift of size 0 which is in the form of a step function is applied into a process at 
time t =50 as: 

 

50;0
50;0

)(
tt

tt
t                                                                                                                                     (5) 

where 0 is the magnitude of a shift and t0 is the time that a shift occurs. 

4. Experimental Design 

 The empirical analysis is conducted to examine the effect of input factors on the responses. The screening design 
of experiment is the 2k factorial. For every experiment, the fixed categorical variable is the type of control charts 
(MR and EWMA charts) used to monitor processes. However, other variables are numeric and they are set to low 
and high levels because of the factorial design condition. Therefore, small and large shift magnitudes are set to 0.5 a 
and 3.5 a respectively while the parameters of ARIMA equations (AR parameters:  and MA parameter: ) for each 
model are between -1 and 1 as shown in Table 1. 

 
                                                                   Table 1. Input factors and levels for ARIMA (1, 0, 1) and ARIMA (0, 1, 1). 
 
 
 
 
 
 
 
 

5. Control Chart Characterization 

To characterize the performance of control charts, the experiments are divided into two cases based on two 
process models: ARIMA (1, 0, 1) and ARIMA (0, 1, 1). Regarding the simulation, each run is composed of 10,000 
iterations which are accomplished by using Palisade’s @Risk® version 5.5. The random errors (at) from each period 
are simulated by following normal distribution with zero mean and a constant variance as: )1,0(~ Nat . A factor 
screening experiment is designed using a statistical package, Design Expert® version 8.0, to analyze the effect of 
autocorrelation and other factors on the response. 

5.1. Stationary Processes 

For stationary processes, ARIMA (1, 0, 1) is utilized to represent the processes. The experimental results for 
ARIMA (1, 0, 1) are shown in Table 2. For the analysis, the inversed square root transformation was applied to the 
response in order to satisfy all the residual conditions regarding model validation. The analysis of variance 
(ANOVA) and the half- normal plot were utilized to reveal the significant factors and their interactions. According 
to the half normal plot in Fig. 2, the types of charts (C) contributes the highest effect on the ARL, followed by AR 
parameter (A) and shift sizes (D). The MA parameter (B) is included in the model because of the hierarchical 
design. Moreover, due to the analysis of variance (ANOVA) in Table 3, the interaction effects exist and are based 
mostly on the above factors, with the highest-order terms being ABD. 
 

Factor ARIMA(1, 0, 1) ARIMA (0, 1, 1) 

Low High Low High 

A (AR parameter; ) -1 1 - - 

B (MA parameter; ) -1 1 -1 1 

C (Types of charts) MR EWMA MR EWMA 

D (Shift size) 0.5 a 3.5 a 0.5 a 3.5 a 
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                                                    Table 2. Design matrix and results for ARIMA (1, 0, 1) case. 
Run   Chart Shift ARL 

1 -1 -1 MR 0.5 42.6971 
2 1 -1 MR 0.5 2.2831 
3 -1 1 MR 0.5 46.611 
4 1 1 MR 0.5 5.4945 
5 -1 -1 EWMA 0.5 1.4106 
6 1 -1 EWMA 0.5 1.0561 
7 -1 1 EWMA 0.5 1.0281 
8 1 1 EWMA 0.5 1.3537 
9 -1 -1 MR 3.5 2.0983 

10 1 -1 MR 3.5 1.38 
11 -1 1 MR 3.5 45.1229 
12 1 1 MR 3.5 1.32 
13 -1 -1 EWMA 3.5 1.0495 
14 1 -1 EWMA 3.5 1.1544 
15 -1 1 EWMA 3.5 1.097 
16 1 1 EWMA 3.5 1.0252 

 
According to the interaction plot in Fig. 3, EWMA chart should be deployed since it can detect a shift rapidly for 

the whole range of : -1 <  < 1. It is interesting to note that MR chart might be used instead of EWMA only when  
is negatively low since its ARL at  = -1 is lower than the one at  = +1.  

 
                                       Table 3.  ANOVA for ARIMA (1, 0, 1) case. 

Source SS df MS F p-value 

A-  0.172882 1 0.172882 19.73447 0.0113 
B-  0.030441 1 0.030441 3.474872 0.1358 

C-Chart 0.792649 1 0.792649 90.48066 0.0007 
D-Shift 0.115838 1 0.115838 13.22284 0.0220 

AB 0.001451 1 0.001451 0.165678 0.7048 
AC 0.176303 1 0.176303 20.12497 0.0109 
AD 0.000367 1 0.000367 0.041885 0.8478 
BC 0.04309 1 0.04309 4.918747 0.0908 
BD 0.004751 1 0.004751 0.542334 0.5023 
CD 0.060569 1 0.060569 6.913986 0.0582 

ABD 0.079155 1 0.079155 9.035473 0.0397 
Residual 0.035042 4 0.00876   

Total 1.512539 15    

 

 
Fig. 2. Half-normal plot for ARIMA (1, 0, 1) case. 
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On the other hand, due to the cube plot in Fig. 4, when  is in consideration, the ARLs at  = -1 is higher than 
the ones at  = + 1. However, there are exceptions under these conditions (chart = EWMA,  = +1, shift = 0.5 and 
chart = EWMA,  = -1, shift = 3.5). 
 

 
Fig. 3. Interaction plot of BC. 

 

 
 

Fig. 4. Cube plot of ABD interaction. 
 
In conclusion, when compared with MR, EWMA charts should be the most appropriate control chart to monitor 

correlated and stationary process. These results are still valid whether shift sizes are small or large. However, 
besides the EWMA chart, the MR chart might be utilized under some situations. 

5.2. Non-Stationary Processes 

The ARIMA (0, 1, 1) model is deployed to represent non-stationary processes and the design matrix for non-
stationary case is shown in Table 4.  
  
                                                              Table 4. Design matrix and results for ARIMA (0, 1,  1) case. 

Run  Shift Chart ARL 
1 -1 0.5 MR 2.3325 
2 1 0.5 MR 5.4765 
3 -1 3.5 MR 1.3765 
4 1 3.5 MR 1.3185 
5 -1 0.5 EWMA 1.3589 
6 1 0.5 EWMA 2.8043 
7 -1 3.5 EWMA 1.1572 
8 1 3.5 EWMA 1.0252 

X1 = B: 
X2 = C: Chart
A: = 0.0
D: Shift = 2.00
C1 MR
C2 EWMA

C: Chart
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For non-stationary case, before the regression equation is constructed, the transformation is required to ensure 

that residuals satisfy the i.i.d. conditions.  After applying the inverse transformation to ARL, the half-normal plot 
(Fig. 5) and analysis of variance (ANOVA) in Table 5 show that the type of chart (C), shift size (B), AR model 
coefficients (A) and their interactions (AB and BC) contribute the significant effects on ARL. The experimental 
results also point out that EWMA chart is still robust to both outliers and the correlation structure of observations as 
implied in its ARLs. According to the interaction plots in Fig. 6 and 7, both EWMA and MR charts are not sensitive 
to shift size when  is highly negative (the ARLs are significantly low at  = -1). Moreover, the ARL of EWMA is 
still lower than that of MR chart.  
 
                                          Table 5. ANOVA for ARIMA (0, 1, 1). 

Source SS df MS F p-value 

Model 0.509985 5 0.101997 106.5878 0.0093 

A-  0.012174 1 0.012174 12.72167 0.0704 

B-Shift 0.131001 1 0.131001 136.8978 0.0072 

C-Chart 0.256607 1 0.256607 268.1564 0.0037 

AB 0.044778 1 0.044778 46.79333 0.0207 

BC 0.065425 1 0.065425 68.37001 0.0143 

Residual 0.001914 2 0.000957   

Total 0.511899 7    

 

 
Fig. 5. Half-normal plot for ARIMA (0, 1, 1) case. 

 

 
Fig. 6. Interaction plot AB (MR chart). 
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Fig. 7. Interaction plot AB (EWMA chart). 

 
The interaction plots (Fig. 8 and 9) point out that both charts have the same performance when the shift size is large 
(3.5). However, the capability of EWMA is superior to MR charts. Similar to the results from a stationary case, 
EWMA charts should be selected to monitor non-stationary processes since its ARLs are lower than those of MR 
chart in every scenarios. 
 

 
Fig. 8. Interaction plot BC (  = -1). 

 

 
Fig. 9. Interaction plot BC (  = +1). 
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6. EWMA Robustness 

In reality, there is no single model which can accurately explain the observations. As a result, an extra study was 
conducted to ensure that EWMA charts are robust to different types of autocorrelated data. As a result, besides the 
previously used models, another ARIMA model, ARIMA (1, 0, 0), was used to assess the robustness of EWMA 
charts. The selected model in this study is ARIMA (1, 0, 0) which can be shown as: tttt aaNN 11 .     
According to table 6, the AR parameter gradually increased by 0.2 from -1 to 1 while the shift size was varied from 
0 to 4 (0, 1, 2, 3 and 4) and MR and EWMA charts were utilized to monitor the data 

 Table 6. ARL results for MR charts. 
 Shift ARL(MR) ARL(EWMA)  Shift ARL(MR) ARL(EWMA) 

-1.0 0 84.44 104.36 1.0 0 62.55 5.13 

 1 82.24 16.67  1 29.13 2.21 

 2 81.97 7.07  2 8.00 1.85 

 3 81.71 4.58  3 4.76 1.44 

 4 81.10 3.43  4 4.03 1.03 

-0.8 0 92.51 474.29 0.8 0 81.40 10.16 

 1 94.72 24.54  1 74.61 4.03 

 2 91.06 8.98  2 56.72 2.74 

 3 85.47 5.58  3 27.89 2.28 

 4 79.18 4.03  4 8.02 2.01 

-0.6 0 65.33 456.34 0.6 0 48.87 25.03 

 1 64.32 21.12  1 45.41 5.80 

 2 63.70 8.09  2 33.78 3.41 

 3 56.21 5.07  3 16.82 2.63 

 4 47.46 3.71  4 4.97 2.22 

-0.4 0 54.5 411 0.4 0 43.45 54.18 

 1 52.91 17.53  1 40.52 7.47 

 2 48.73 7.09  2 32.13 3.89 

 3 41.9 4.51  3 19.24 2.85 

 4 31.93 3.35  4 7.55 2.34 

-0.2 0 46.59 334.89 0.2 0 42.44 115.8 

 1 45.95 14.4  1 40.68 9.44 

 2 41.11 6.12  2 33.37 4.49 

 3 33.51 3.97  3 22.72 3.12 

 4 21.59 2.99  4 10.35 2.48 

0 0 43.87 219.69     

 1 41.97 11.67     

 2 36.97 5.24     

 3 26.41 3.50     

 4 12.07 2.69     
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According to Table 6, when assignable causes exist in the process, EWMA charts are able to detect shifts much 
faster than MR charts (the ARL1 of EWMA is lower than those of MR charts). Moreover, the empirical study also 
reveals that EWMA charts are more robust to the autocorrelation structure of data (the ARL0 of MR is lower than 
those of EWMA charts) than MR charts when there is no shift in the process. However, this above conclusion might 
not be holistic since the ARL0 of MR charts is much higher than those of EWMA charts when  equals 0.6, 0.8 and 
1.0. The results from the above study signify that EWMA charts still outperform MR charts when the observations 
follow ARIMA (1, 0, 0) model.  

7. Conclusion 

This study signifies that EWMA charts outperform the traditional Shewhart charts under autocorrelation 
scenarios. Therefore, the utilization of EWMA charts will lead to the better performance of a control chart to detect 
a shift resulted from a special cause in the autocorrelated processes. The different categories of stationarity need a 
different chart design and it will facilitate the application of practitioners when the process is autocorrelated. The 
performance analysis of a statistical in this phase is also based on stationary and non-stationary processes based on 
two different models, ARIMA (1, 0, 1) and ARIMA (0, 1, 1). According to the analysis, the effects of AR parameter 
( ), MA parameters ( ), the appropriate types of control charts and shift sizes on the ARL are determined. In 
summary, the resultant analysis is concluded as follows: 

1. When the observations are stationary and follow ARIMA (1, 0, 1) pattern, both  and  have a siginificant 
effect on the ARL. The empirical analysis reveals that EWMA is the most suitable control chart to monitor 
stationary processes because of its robustness to shift size and autocorrelation structure. However, MR chart can also 
be utilized in a specific scenario that  is highly positive.  

2. When ARIMA (0, 1, 1) is utilized to characterize the non-stationary processes and  was highly negative, both 
EWMA and MR charts are sensitive to small shift size. 

3. For both stationary and non-stationary cases, the performance of the SPC to minimize ARL will be 
significantly improved if the EWMA chart is utilized to monitor the observations. 

4. The robustness of EWMA charts is assessed by the performance comparison of MR and EWMA charts under 
ARIMA (1, 0, 0) scenario.  

According to the results, the selection of appropriate control charts will assist practitioners to monitor the 
autocorrelated processes effectively. It is interesting to note that this empirical research was conducted on only two 
types of charts (MR and EWMA).  
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