

Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Symposium, Volume 22, No. 1, ISSN 1726-9679
ISBN 978-3-901509-83-4, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2011

Make Harmony between Technology and Nature, and Your Mind will Fly Free as a Bird
Annals & Proceedings of DAAAM International 2011

DB4OBJECTS BASED BUFFERING APPLICATION FOR USE IN SOFTWARE
MONITORING SYSTEMS

GRIGORESCU, C[ostin] - M[arius]; MORARU, S[orin] - A[urel];
KRISTALY, D[ominic] M[ircea] & BADEA, M[ilian]

Abstract: Buffering inside a distributed monitoring software
system that runs inside a LAN and stores readings on a central
component is a very important issue. This paper presents the
structure of a buffering application that is based on a
DB4Objects object database. The application is designed to
operate inside a distributed monitoring software system
between the data acquisition and server components. Its main
purpose is to offer persistent storage for the readings in the
case of communication problems between the two components.
When the communication problems are fixed, the application
resumes sending real time readings and starts transferring the
buffer’s contents to the server. For optimal performance, the
buffer is divided in partitions that contain the readings
associated to one hour.
Key words: buffering, object databases, monitoring system

1. INTRODUCTION

In general, distributed monitoring software systems have a
data acquisition component, a data storage component and a
data display component (Wikipedia, 2010).

This paper focuses on the communication between the data
acquisition and data storage components. The components of a
distributed monitoring software system run on different
computers and send data between them using, in most cases, the
Ethernet interface.

The data flow between the data acquisition component and
data storage component consists of readings made by the first
one that need to be stored inside databases or other storage
systems by the second one. If this flow gets interrupted, then
the readings are lost and the monitored information will contain
inconsistences. The flow can be interrupted by various reasons
like software and hardware problems, electrical problems, LAN
problems, etc.

In the case of software, hardware or electrical problems on
the server side and LAN problems, a buffering application
running on the same computer as the data acquisition
component represents a solution for temporarily storing the
readings while the server side or LAN problems are fixed
(Grigorescu et al., 2010).

This paper presents, in its following sections, a buffering
application concept based on a DB4Objects object database.
The following sections present the concept of object databases
with advantages and disadvantages and a speed test performed
on DB4Objects and the concept of the buffering application
with work-flow diagrams for the main actions performed by it.

2. OBJECT DATABASES

An object database is represented by a database
management system in which the data is stored using objects
similar to the ones used in object oriented programming.

The decision to use an object oriented database system was
influenced by the following main aspects: integrability (the
need to be able to integrate the buffering application with
almost no changes to the existing monitoring system),

configurability and easy installation (the need to develop an
application that needs no configuration or specific installation
for the buffer storage) and easy maintenance (the need to be
able to perform maintenance tasks easily) (Wikipedia, 2011).

Choosing the DB4Objects database solution resolved most
of the above aspects such as:
• Configurability and instalation: DB4Objects does not

require an installation procedure. It comes as a JAR archive
for Java or a DLL library for .Net. After referencing one of
these libraries inside a project, the users can benefit from all
the features provided by DB4Objects.

• Maintenance: The DB4Objects databases are stored in
single files which makes any backup procedure very easy to
perform.
After selecting the object database type, the next step was

to test its performance by running queries on different database
configurations. These configurations used different partitioning
techniques such as daily partitions and hourly partitions.

Daily partitioning consists of one database for each day and
hourly partitioning consists of one database for each hour of a
day. For example, for the month of March a daily partitioning
system will contain 31 databases and an hourly partitioning
system will contain 744 databases (31 days * 24 hours per day).

An application was developed to generate readings that
were stored in DB4Objects databases with daily and hourly
partitions. This application generated readings for 8 months
(January - August) with a 1 second interval between each
reading (3600 readings per hour, 86400 readings per day). For
daily partitioning the application generated a total of 243
databases and for hourly partitioning it generated a total of
5832 databases (Versant Corporation, 2011).

The performance test consists of running select queries for
different periods of time and measuring the time needed to get
the results. These periods of time are: 15 minutes, 30 minutes, 1
hour and 1 day.

The average time needed by DB4Objects to return the
objects is presented in Tab. 1. This time shows that, for a small
number of readings, the hourly partitioning system is 4 times
faster than the daily one. Considering this result, the hourly
partitioning system was selected.

Partition

Type
T1 (ms) T2 (ms) T3 (ms) Avg (ms)

Time to get the readings for 15 minutes
Daily 3578 3328 3547 3484.3

Hourly 891 984 844 906.3
Time to get readings for 30 minutes

Daily 3469 3390 4047 3635.3
Hourly 859 891 922 890.6

Time to get readings for 1 hour
Daily 3500 4250 3625 3791.6

Hourly 875 859 1031 921.6
Time to get readings for 1 day

Daily 3328 4141 3812 3760.3
Hourly 6172 5547 5125 5614.6

Tab.1. Performance tests results

0081

Fig. 1. Buffering application workflow

3. BUFFERING APPLICATION CONCEPT

Fig. 1 presents the workflow of the proposed concept: the
application receives readings from the data acquisition
component and sends them either to the data storage component
or to the DB4Objects buffering system.

Because the buffering application is located between the
data acquisition and storage components it needs to
communicate with both of them. This communication is made
using sockets: an input socket which is listened for incoming
data and an output socket (on the server side) which is
periodically checked by a thread (Mahmoud, 1996). If the
output connection is alive, then all readings received from the
data acquisition component are sent directly to the data storage
component.

If the connection is not alive, then the application enters the
buffering operation mode presented in Fig. 2.

In this operating mode, the application follows the
following steps:
• Gets the current date in order to check if a folder named

YYYY_MM_DD already exists. In this folder all hour
partitions for the specified date are kept. If the folder does
not exist, then the application creates it.

• Opens a connection to a DB4Objects database named
buffer_HH.yap. If the database does not exist, then
DB4Objects will automatically create it.

• Creates a ReadingBean object in which it will add the
following information: current date and time, reading object
received from the data acquisition component and a unique
identifier.

• Stores the ReadingBean object inside the DB4Objects
database and closes the connection with it.
The reading object can have any structure as long as it can

be a child of the Object class from Java.

Fig. 2. Buffering operating mode

Fig. 3. Post buffering operation mode

This solves the integrability aspect mentioned before
because the buffering application does not need to know the
structure of the reading objects that are sent from the data
acquisition component to the data storage one.

Fig. 3 presents the post buffering operation mode. The
application enters in this mode after detecting that the
connection with the data storage component has been
reestablished.

The steps of this operating mode are:
• Send a real time reading object to the server.
• Get the last 10 ReadingBean objects from the buffer and

send their reading objects to the server. If the objects were
successfully sent, then delete the ReadingBeans from the
buffer.

• If the partition is empty, then delete the partition.

4. CONCLUSION

This paper tries to propose a concept for a buffering
application based on an object database system provided by
Versant: DB4Objects. The role inside a monitoring system of
this buffering application is to prevent monitored data loss in
the case of a communication failure between the component
that makes the data acquisition and the component that stores
and manages it.

5. ACKNOWLEDGEMENTS

This paper is supported by the Sectorial Operational
Programme Human Resources Development (SOP HRD),
financed from the European Social Fund and by the Romanian
Government under the contract number POSDRU/88/1.5/S/
59321.

6. REFERENCES

Grigorescu, C. M.; Moraru, S. A.; Neukart, F. & Badea, M.

(2010). Buffering application for an industrial monitoring
software system, Proceedings of the 12th

Mahmoud, Q. H. (1996). Sockets programming in Java: A
tutorial, JavaWorld.com

 International
Conference on Optimization of Electrical and Electronic
Equipment, OPTIM 2010, 20-22 Maz 2010, Brasov,
Romania, 971-1-4244-7020-4/10, pp. 780-780

DB4Objects 8.0 Java Reference Guide (2011). Versant
Corporation

*** (2011) http://en.wikipedia.org/wiki/Object_database -
Wikipedia, Accessed on: 2011-07-20

*** (2010) http://en.wikipedia.org/wiki/Distributed_computing
- Wikipedia, Accessed on: 2011-07-18

0082

