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The rate of the external loading must be equal to the rate of 

energy dissipation in the plate. Using the von Mises yield 
criterion, this requirement is expressed by 
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where P is the external load and A is the area of the plate. 

Substituting the increments of equations (3) and (4) gives 
the following expression: 
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The same procedure is used for the rest of the plate, and the 

forces are summed to give the total force acting on the plate. 
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If the plate is orthotropic the force-deflection function can 

be expressed as 
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where N0x and N0y are the membrane yield forces in the x and y 
direction, respectively. 

After rupture, a special plate element is used, which takes 
into account that the plate may be intact with membrane tension 
or be fractured in the longitudinal, in the transverse or in both 
directions (Zhang, 1999).  

If the boundary of the plate is touched by the striking bow, 
the part of the plate belonging to this boundary will be omitted. 
The rest of the plate will still be included until rupture. A new 
plate, found below or to the side, is now to be included. In 
Figure 2 the deformation pattern for a plate below the first plate 
of contact is shown. The resistance of this plate can now be 
calculated as 
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where P1, P2, P3 and P4 are the resistance of each of the four 
plate parts. The new distance for R1, R2, R3 and R4 are defined 
in Figure 2. 

 
Fig.2 Deformation pattern for two plates. The first plate of 
contact and the plate below 

 
If the striking ship has a bulbous bow, first a conventional 

ship without bulb is considered and all the plates in contact 
with the bow are found. If both the bow and the bulb touch the 
same plate, only the largest deflection is considered. 
 
4. CONCLUSIONS 
 

The presentation is part of a procedure which analyses ships 
collisions, addressing to all types of ships and damage 
scenarios.  

The present theoretical model is based on the principle of 
splitting the collision problem into an external and an internal 
analysis. The method based on the super-element method, 
where the ship’s structure is separated into its structural 
elements like plates, beams, or plate intersections like X and T 
elements is a simplified but rational model for determining the 
internal mechanics. 

An example of super element can be described as: the bow 
strikes between two transverse frames, first the side plating will 
deflect and later will fracture. After a certain penetration, the 
bow hits some deep stiffeners, which will deflect as beams. 
Later on the bow will come into contact with transverse 
bulkheads or frames. These intersections are modelled as T or 
X elements. 

The use of super-element solution calls for adaptive or 
successive discretisation. By summing up the crushing force of 
each super-element, it’s possible to determine the total contact 
load between the two involved vessels and the total amount of 
absorbed energy.  
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