

CASE S

Abstract: The
projects where
code is higher
developers. T
experiment in
complex mod
reported bugs
reported bugs
single develop
pair programm
Key words: pa

1. INTRODU

In softwar
create new ap
is also equall
includes bug f

Company
expertise are I
term project
management.
this project. M
one person.
difficult, beca
was most of t
maintain anoth
these, we dec
programming
Afterwards, w
changes in the

Pair progr
techniques. Th
together on a
writing a code
observer or na
of the driver,
code written b
change their ro
just passively
actively invol
and communic
differently (M

Pair progr
where only o
module. That
decided to ex
work togethe
compensate w
work on it an
bigger teams w
during the pro
even during th
not. This enab
among the t
developers na

STUDY: US

ory and studies
e pair program
r than in those
To verify this
n which a pa
dule over a tw
s in this modu
s in modules of
pers. Finally, l
ming are discus
air, programmin

UCTION

re development
pplication modu
ly important to
fixes and code r

Perpetuum M
Internet technol

of developi
Many of the co

Most complex m
Maintaining th

ause the person
the time engage
her existing on
cided to carry

during develo
we would analyz
e development p
ramming is one
his technique r
single compute

e, and he is cal
avigator, is just
watching for e
by the driver.
oles. It is really

y watching the
ved in the pro
cating with the

McConnell, 2004
ramming enable
one person is
t was the main
xperiment with
er on one task
when an expert
ny longer. Th
where it is pos
oject, during th
he day regardle
bles the distribu
team. Apart

aturally share o

Annals of DA

SING PAIR

s of pair progr
mming techniqu

where code is
s hypothesis,
air of program
wo-month perio
le was compar
f similar comp
long term com
ssed.
ng, extreme, qu

projects, it is n
ules with great
o assure easy m
refactoring.
Mobile, whos
logies and porta
ing software
ompany's develo
modules were de
hese modules
n that develope
ed in developin

ne. In order to a
out an experi

opment of one
ze results and d
process.
e of several ex
requires that tw
er (Roodyn, 20
led the driver.
t sitting aside, e
errors and const

Driver and na
y important that
e process. Ins

ocess of creatin
e driver about w
4).
es the company
familiar with
n reason that
pair programm

k, it is easier
t who develope
his benefit can
sible to change
he developmen
ess whether the
ution of project
from project-r

other technical

AAAM for 2010 & P
ISBN 978-3-901

R PROGRA

KRA

ramming tell th
e is used, qual
developed by s
we conducted

mmers develop
od. The numbe
red with numb
plexity develope
mmercial benefi

uality, productiv

not only importa
functionality, b

maintenance, w

se main area
als, conducts a

for web co
opers participat
eveloped entire
has proved t

ed a certain mo
ng a new modu
avoid situations
iment of using
e complex mo
ecide about pos

treme program
wo developers
04). One of the
Another one, c
examining the
tantly reviewin

avigator periodi
t the navigator i
tead he shoul

ng code by thin
what could be

y to avoid situa
the code of
Perpetuum M

ming. If two pe
r for the team
ed the code ca
be even great

e pairs several t
nt of certain ta
e task is finishe
-specific knowl
related knowl
knowledge ado

Proceedings of the 2
1509-73-5, Editor B

Make Harm

AMMING
MODULE

AJCAR, M[ir

hat in
lity of
single
d an

ped a
er of

ber of
ed by
fits of

vity

ant to
but it

which

as of
long-

ontent
ted in
ely by
to be
odule
ule or
s like

g pair
odule.
ssible

mming
work
em is
called
work

ng the
ically
is not
ld be
nking
done

ations
some

Mobile
eople
m to
annot
ter in
times
sk or
ed or
ledge
edge,
opted

in t
com
deve

2. P

A
prog
seen
impo
if co
expe
prog
deve
only
desig
the j
(Wil

T
than
Stern
solu
their
tried
feel
the
two
prog

C
the p
early

T
pair

•

•

•

3. C

3.1 C

W
deve
prog
the
proje
be d
desig

21st International DA
B. Katalinic, Publish
ony Between Techn

IN DEVEL
E

rjana]

their free time
mmunicate mor

elop code indiv

PAIR PROGR

Among all
gramming raise
n as a time los
ortant to finish
ode quality is
eriment has bee
gramming requ
elopers are wor
y code writing,
gn and program
job in 40-50%
lliams et al., 20
This can be ex

n the sum of IQ
nberg, 1988). D

utions far better
r combined ex
d pair programm

much greater c
development p
very good mo

gramming.
Continuous cod
process of codin
y on in the deve
The following
programming t
• Pair mem

concepts
• They hav

partner an
be good

• Technolog
be comp
inexperien
can establ
different l
productive

CASE STUDY

Case study goa
We wanted to
elopment to
gramming. Base
usability of pa
ect or other futu

done for all spe
gn, UI design, c

AAAM Symposium
hed by DAAAM Int
nology and Nature, a

LOPMENT

e, because th
re compared t
idually.

RAMMING A

extreme prog
es most concer
s, especially in
functionality a
lower. If no

en done, the exp
uires almost tw
rking alone. Th

but if we com
mming itself, it
of the time nee

000).
xplained by the
Qs of individua
Developers wor
r than those of
xperience and
ming testify tha
confidence in t

process much m
otivational facto

de reviewing re
ng, bugs still ap
elopment proce
conditions nee
technique:

mbers have to a

e to be willin
nd the commun

gy knowledge o
parable. If o
nced member w
lish a good men
levels of expe
e pair programm

Y DESCRIPT

als
o use this case

gain practic
ed on that expe
air programmin
ure company pr
ecific project a
coding, testing,

m, Volume 21, No.
ternational, Vienna,
and Your Mind will

Annals of DA

T OF A CO

ey work mor
to the situatio

ANALYSIS

gramming tec
rns. Working in
n situations wh
as soon as poss
studies are an

pected presump
wice as much ti
his can be true
mpare time spe
t is possible for
eded by two sin

e fact that grou
als in the grou
rking in a pair
individual dev
creativity. Peo

at when workin
their solutions
more. Confiden
ors in a creativ

esults in quality
ppear, but are f

ess.
ed to be met pr

agree with pair

ng to work wi
nication betwee

of developers i
one experienc
work together
ntoring relation

erience are not
ming.

TION

e study of co
cal experienc
erience we wan
ng for the curr
rojects. The eva
ctivities: analy
, refactoring and

1, ISSN 1726-9679
, Austria, EU, 2010
l Fly Free as a Bird
AAM International

OMPLEX

e closely and
ns when they

chniques, pair
n pairs can be

hen it is highly
sible, no matter
nalyzed and no
ption is that pair
ime then when
if we compare

ent on analysis,
r pairs to finish
ngle developers

up IQ is bigger
up (Williams &

usually design
velopers, due to
ople who have
ng in pairs, they
and they enjoy

nce and joy are
ve job such as

y code. During
found and fixed

rior to applying

r programming

th a particular
en them has to

in a pair has to
ced and one
in a pair, they
nship, but their
t conducive to

mplex module
e with pair

nted to evaluate
rent long term
aluation should
sis, application
d bug fixing.

d

d
y

r
e
y
r
o
r
n
e
,
h
s

r
&
n
o
e
y
y
e
s

g
d

g

g

r
o

o
e
y
r
o

e
r
e

m
d
n

3.2 Module functionality
In this case study we developed a membership module with

applied policies and rights. Both users and groups can be
members of an unlimited number of groups. For each group and
user, policies define which actions are generally allowed,
denied or not set. Besides policies, it is possible to set rights to
perform actions on specific objects in the application. Just as
policies, rights can be allowed, denied or not set. If a policy or
right is not defined for the specific object, it is inherited from
the parent object. If a policy or right is not defined for a user or
group, it is inherited from the parent group.

Membership module was supposed to work fast enough in
order not to disturb normal working of the application.

Technology used in the whole project, including this
module was: MS VB.NET & MS SQL server.

3.3 Acceptance of pair programming

Participants in this experiment were two developers that
have been involved in the project from its beginnings, but did
not have any experience in pair programming, neither in this
project, nor any other.

One of them was keen to experience pair programming
while the other did not see any advantages at the beginning of
the experiment. It can be explained by the fact that the two
developers were familiar with the technology used to a different
extent. Still, no one refused to participate in the experiment,
because it was a group decision to try it and it has been defined
as an experiment with limited duration – until the membership
module is finished.

3.4 Working environment

Most of the time, pair was sitting alone in the room.
Occasionally, the team leader worked in the same room, but
didn’t interfere.

3.5 Duration

Experiment was conducted during the period of two
calendar months. During this period, no other tasks were taken
by these individuals – no bug fixing and no code refactoring of
other modules, so the pair could work on the task the entire day.
Pair programming is a skill just as programming itself, and as
any other skill, the more it is practiced, the better it is
developed. It took about two weeks before pair developers
started to feel an acceptable level of comfort in their ability.

4. RESULTS

Some results in this section were measured objectively
(working hours, number of reported bugs). Other results are
observations of pair developers and the team leader. In the
second case, opinions before and after the experiment were
compared.

Other colleagues were informed about the experiment. No
one told them they shouldn’t disturb the pair. Still, that is what
happened - the amount of disturbance coming from the working
environment decreased. This is one of the reasons the pair
seemed to be more productive in this working mode.

The other reason is the working behavior of the individuals
in the pair. Development velocity is never 100%, but usually
somewhere between 70-80% (Pilone & Miles, 2008). However,
when developers worked as a pair, they were more focused on
the task during the work day. It is exhausting to maintain such a
high level of concentration during the day, and this is why the
number of hours worked during the experimental period
slightly dropped.

Developers have shown greater willingness to try pair
programming at the end of the experiment then at the
beginning. This can be explained by the feel-good factor when
working in pairs (Muller & Padberg 2004). At the beginning,

they felt uncomfortable because their partner was observing
them all the time. But at the end, they were used to working
together and felt comfortable working in pairs. They also
described it as a very positive experience.

The quality of code produced in this experiment was greater
than the code for other modules produced individually by the
same developers forming the pair. In fact, this module was the
module with the smallest number of reported bugs in the entire
application. Furthermore, both individuals felt comfortable in
module code refactoring performed later on, during the project.
Both agreed that the code of this module with the completely
implemented functionality was smaller and easier to read then
in case of some other modules (Bipp et al., 2008).

Pair developers, even those working in the same team from
the begging of the project, had different working styles before
the experiment. After the experiment, their styles were still
different, but much more similar than before, so developers
understood code written by each other much better.

5. CONCLUSION

We are aware that this experiment would have been better
if more people, ie. pair programmers had participated in it by
doing different tasks of various levels of complexity. Further
studies should include the development of the same modules by
pair programmers and single developers in the same time to
obtain more significant results. Even so, this case study was
valuable to us. Analysis of the results of this experiment has
shown that in our case it would be good to use pair
programming for development of modules with complex
business logic. In scenarios like this we think that among all
project activities, greatest benefits can be achieved in analysis,
application design, coding and refactoring.

In developing small, simple modules and activities such as
user interface design, testing and bug fixing, single developers
should be used.

6. REFERENCES

Bipp, T.; Lepper, A. & Schmedding, D. (2008). Information

and Software Technology. Pair programming in software
development teams – an empirical study of its benefits, Vol.
50, No. 3, (February 2008) page numbers (231-240),
ISSN:0950-5849

McConnell, S. (2004). Code Complete: A Practical Handbook
of Software Construction, 2nd edition, Microsoft Press,
ISBN-10: 0735619670, ISBN-13: 978-0735619678,
Redmond, Washington

Muller , M.M. & Padberg , F. (2004). 10th IEEE International
Symposium on Software Metrics (METRICS'04), An
Empirical Study about the Feelgood Factor in Pair
Programming, pp. 151-158, ISBN: 0-7695-2129-0,
Chicago, Illinois, USA, September 2004., IEEE Computer
Society Washington, DC, USA

Pilone, D. & Miles, R. (2008). Head First Software
Development, O'Reilly Media , ISBN-10: 0596527357,
ISBN-13: 978-0596527358, United States

Roodyn, N. (2004). eXtreme .NET: Introducing eXtreme
Programming Techniques to .NET Developers, Addison-
Wesley Professional, ISBN: 0321303636, New Jersey,
United States

Williams, L.; Kessler, R.R.; Cunningham, W. & Jeffries, R.
(2000). Strengthening the Case for Pair-Programming
Available from: http://collaboration.csc.ncsu.edu
/laurie/Papers/ieeeSoftware.PDF Accessed: 2010-08-18

Williams, W.M. & Sternberg, R.J. (1988). Intelligence. Group
intelligence: Why some groups are better than others, Vol.
12, No. 4, (October –December 1988) page numbers (351-
77), ISSN: N/A

