Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679
ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals of DAAAM International

CASE STUDY: USING PAIR PROGRAMMING IN DEVELOPMENT OF A COMPLEX
MODULE

KRAJCAR, MJirjana]

Abstract: Theory and studies of pair programming tell that in
projects where pair programming technique is used, quality of
code is higher than in those where code is developed by single
developers. To verify this hypothesis, we conducted an
experiment in which a pair of programmers developed a
complex module over a two-month period. The number of
reported bugs in this module was compared with number of
reported bugs in modules of similar complexity developed by
single developers. Finally, long term commercial benefits of
pair programming are discussed.

Key words: pair, programming, extreme, quality, productivity

1. INTRODUCTION

In software development projects, it is not only important to
create new application modules with great functionality, but it
is also equally important to assure easy maintenance, which
includes bug fixes and code refactoring.

Company Perpetuum Mobile, whose main areas of
expertise are Internet technologies and portals, conducts a long-
term project of developing software for web content
management. Many of the company's developers participated in
this project. Most complex modules were developed entirely by
one person. Maintaining these modules has proved to be
difficult, because the person that developed a certain module
was most of the time engaged in developing a new module or
maintain another existing one. In order to avoid situations like
these, we decided to carry out an experiment of using pair
programming during development of one complex module.
Afterwards, we would analyze results and decide about possible
changes in the development process.

Pair programming is one of several extreme programming
techniques. This technique requires that two developers work
together on a single computer (Roodyn, 2004). One of them is
writing a code, and he is called the driver. Another one, called
observer or navigator, is just sitting aside, examining the work
of the driver, watching for errors and constantly reviewing the
code written by the driver. Driver and navigator periodically
change their roles. It is really important that the navigator is not
just passively watching the process. Instead he should be
actively involved in the process of creating code by thinking
and communicating with the driver about what could be done
differently (McConnell, 2004).

Pair programming enables the company to avoid situations
where only one person is familiar with the code of some
module. That was the main reason that Perpetuum Mobile
decided to experiment with pair programming. If two people
work together on one task, it is easier for the team to
compensate when an expert who developed the code cannot
work on it any longer. This benefit can be even greater in
bigger teams where it is possible to change pairs several times
during the project, during the development of certain task or
even during the day regardless whether the task is finished or
not. This enables the distribution of project-specific knowledge
among the team. Apart from project-related knowledge,
developers naturally share other technical knowledge adopted

in their free time, because they work more closely and
communicate more compared to the situations when they
develop code individually.

2. PAIR PROGRAMMING ANALYSIS

Among all extreme programming techniques, pair
programming raises most concerns. Working in pairs can be
seen as a time loss, especially in situations when it is highly
important to finish functionality as soon as possible, no matter
if code quality is lower. If no studies are analyzed and no
experiment has been done, the expected presumption is that pair
programming requires almost twice as much time then when
developers are working alone. This can be true if we compare
only code writing, but if we compare time spent on analysis,
design and programming itself, it is possible for pairs to finish
the job in 40-50% of the time needed by two single developers
(Williams et al., 2000).

This can be explained by the fact that group 1Q is bigger
than the sum of 1Qs of individuals in the group (Williams &
Sternberg, 1988). Developers working in a pair usually design
solutions far better than those of individual developers, due to
their combined experience and creativity. People who have
tried pair programming testify that when working in pairs, they
feel much greater confidence in their solutions and they enjoy
the development process much more. Confidence and joy are
two very good motivational factors in a creative job such as
programming.

Continuous code reviewing results in quality code. During
the process of coding, bugs still appear, but are found and fixed
early on in the development process.

The following conditions need to be met prior to applying
pair programming technique:

e Pair members have to agree with pair programming

concepts

e They have to be willing to work with a particular

partner and the communication between them has to
be good

e Technology knowledge of developers in a pair has to

be comparable. If one experienced and one
inexperienced member work together in a pair, they
can establish a good mentoring relationship, but their
different levels of experience are not conducive to
productive pair programming.

3. CASE STUDY DESCRIPTION

3.1 Case study goals

We wanted to use this case study of complex module
development to gain practical experience with pair
programming. Based on that experience we wanted to evaluate
the usability of pair programming for the current long term
project or other future company projects. The evaluation should
be done for all specific project activities: analysis, application
design, Ul design, coding, testing, refactoring and bug fixing.

3.2 Module functionality

In this case study we developed a membership module with
applied policies and rights. Both users and groups can be
members of an unlimited number of groups. For each group and
user, policies define which actions are generally allowed,
denied or not set. Besides policies, it is possible to set rights to
perform actions on specific objects in the application. Just as
policies, rights can be allowed, denied or not set. If a policy or
right is not defined for the specific object, it is inherited from
the parent object. If a policy or right is not defined for a user or
group, it is inherited from the parent group.

Membership module was supposed to work fast enough in
order not to disturb normal working of the application.

Technology used in the whole project, including this
module was: MS VB.NET & MS SQL server.

3.3 Acceptance of pair programming

Participants in this experiment were two developers that
have been involved in the project from its beginnings, but did
not have any experience in pair programming, neither in this
project, nor any other.

One of them was keen to experience pair programming
while the other did not see any advantages at the beginning of
the experiment. It can be explained by the fact that the two
developers were familiar with the technology used to a different
extent. Still, no one refused to participate in the experiment,
because it was a group decision to try it and it has been defined
as an experiment with limited duration — until the membership
module is finished.

3.4 Working environment

Most of the time, pair was sitting alone in the room.
Occasionally, the team leader worked in the same room, but
didn’t interfere.

3.5 Duration

Experiment was conducted during the period of two
calendar months. During this period, no other tasks were taken
by these individuals — no bug fixing and no code refactoring of
other modules, so the pair could work on the task the entire day.
Pair programming is a skill just as programming itself, and as
any other skill, the more it is practiced, the better it is
developed. It took about two weeks before pair developers
started to feel an acceptable level of comfort in their ability.

4. RESULTS

Some results in this section were measured objectively
(working hours, number of reported bugs). Other results are
observations of pair developers and the team leader. In the
second case, opinions before and after the experiment were
compared.

Other colleagues were informed about the experiment. No
one told them they shouldn’t disturb the pair. Still, that is what
happened - the amount of disturbance coming from the working
environment decreased. This is one of the reasons the pair
seemed to be more productive in this working mode.

The other reason is the working behavior of the individuals
in the pair. Development velocity is never 100%, but usually
somewhere between 70-80% (Pilone & Miles, 2008). However,
when developers worked as a pair, they were more focused on
the task during the work day. It is exhausting to maintain such a
high level of concentration during the day, and this is why the
number of hours worked during the experimental period
slightly dropped.

Developers have shown greater willingness to try pair
programming at the end of the experiment then at the
beginning. This can be explained by the feel-good factor when
working in pairs (Muller & Padberg 2004). At the beginning,

they felt uncomfortable because their partner was observing
them all the time. But at the end, they were used to working
together and felt comfortable working in pairs. They also
described it as a very positive experience.

The quality of code produced in this experiment was greater
than the code for other modules produced individually by the
same developers forming the pair. In fact, this module was the
module with the smallest number of reported bugs in the entire
application. Furthermore, both individuals felt comfortable in
module code refactoring performed later on, during the project.
Both agreed that the code of this module with the completely
implemented functionality was smaller and easier to read then
in case of some other modules (Bipp et al., 2008).

Pair developers, even those working in the same team from
the begging of the project, had different working styles before
the experiment. After the experiment, their styles were still
different, but much more similar than before, so developers
understood code written by each other much better.

5. CONCLUSION

We are aware that this experiment would have been better
if more people, ie. pair programmers had participated in it by
doing different tasks of various levels of complexity. Further
studies should include the development of the same modules by
pair programmers and single developers in the same time to
obtain more significant results. Even so, this case study was
valuable to us. Analysis of the results of this experiment has
shown that in our case it would be good to use pair
programming for development of modules with complex
business logic. In scenarios like this we think that among all
project activities, greatest benefits can be achieved in analysis,
application design, coding and refactoring.

In developing small, simple modules and activities such as
user interface design, testing and bug fixing, single developers
should be used.

6. REFERENCES

Bipp, T.; Lepper, A. & Schmedding, D. (2008). Information
and Software Technology. Pair programming in software
development teams — an empirical study of its benefits, Vol.
50, No. 3, (February 2008) page numbers (231-240),
ISSN:0950-5849

McConnell, S. (2004). Code Complete: A Practical Handbook
of Software Construction, 2nd edition, Microsoft Press,
ISBN-10: 0735619670, ISBN-13: 978-0735619678,
Redmond, Washington

Muller , M.M. & Padberg , F. (2004). 10th IEEE International
Symposium on Software Metrics (METRICS'04), An
Empirical Study about the Feelgood Factor in Pair
Programming, pp. 151-158, ISBN: 0-7695-2129-0,
Chicago, Illinois, USA, September 2004., IEEE Computer
Society Washington, DC, USA

Pilone, D. & Miles, R. (2008). Head First Software
Development, O'Reilly Media , ISBN-10: 0596527357,
ISBN-13: 978-0596527358, United States

Roodyn, N. (2004). eXtreme .NET: Introducing eXtreme
Programming Techniques to .NET Developers, Addison-
Wesley Professional, ISBN: 0321303636, New Jersey,
United States

Williams, L.; Kessler, R.R.; Cunningham, W. & Jeffries, R.
(2000). Strengthening the Case for Pair-Programming
Available from: http://collaboration.csc.ncsu.edu
/laurie/Papers/ieeeSoftware.PDF Accessed: 2010-08-18

Williams, W.M. & Sternberg, R.J. (1988). Intelligence. Group
intelligence: Why some groups are better than others, Vol.
12, No. 4, (October —December 1988) page numbers (351-
77), ISSN: N/A

