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3.2 Module functionality 
In this case study we developed a membership module with 

applied policies and rights. Both users and groups can be 
members of an unlimited number of groups. For each group and 
user, policies define which actions are generally allowed, 
denied or not set. Besides policies, it is possible to set rights to 
perform actions on specific objects in the application. Just as 
policies, rights can be allowed, denied or not set. If a policy or 
right is not defined for the specific object, it is inherited from 
the parent object. If a policy or right is not defined for a user or 
group, it is inherited from the parent group. 

Membership module was supposed to work fast enough in 
order not to disturb normal working of the application. 

Technology used in the whole project, including this 
module was: MS VB.NET  & MS SQL server. 
 
3.3 Acceptance of pair programming 

Participants in this experiment were two developers that 
have been involved in the project from its beginnings, but did 
not have any experience in pair programming, neither in this 
project, nor any other. 

One of them was keen to experience pair programming 
while the other did not see any advantages at the beginning of 
the experiment. It can be explained by the fact that the two 
developers were familiar with the technology used to a different 
extent. Still, no one refused to participate in the experiment, 
because it was a group decision to try it and it has been defined 
as an experiment with limited duration – until the membership 
module is finished. 
 
3.4 Working environment 

Most of the time, pair was sitting alone in the room. 
Occasionally, the team leader worked in the same room, but 
didn’t interfere.  

 
3.5 Duration 

Experiment was conducted during the period of two 
calendar months. During this period, no other tasks were taken 
by these individuals – no bug fixing and no code refactoring of 
other modules, so the pair could work on the task the entire day. 
Pair programming is a skill just as programming itself, and as 
any other skill, the more it is practiced, the better it is 
developed. It took about two weeks before pair developers 
started to feel an acceptable level of comfort in their ability. 
 
4. RESULTS 
 

Some results in this section were measured objectively 
(working hours, number of reported bugs). Other results are 
observations of pair developers and the team leader. In the 
second case, opinions before and after the experiment were 
compared. 

Other colleagues were informed about the experiment. No 
one told them they shouldn’t disturb the pair. Still, that is what 
happened - the amount of disturbance coming from the working 
environment decreased. This is one of the reasons the pair 
seemed to be more productive in this working mode. 

The other reason is the working behavior of the individuals 
in the pair. Development velocity is never 100%, but usually 
somewhere between 70-80% (Pilone & Miles, 2008). However, 
when developers worked as a pair, they were more focused on 
the task during the work day. It is exhausting to maintain such a 
high level of concentration during the day, and this is why the 
number of hours worked during the experimental period 
slightly dropped. 

Developers have shown greater willingness to try pair 
programming at the end of the experiment then at the 
beginning. This can be explained by the feel-good factor when 
working in pairs (Muller & Padberg  2004). At the beginning, 

they felt uncomfortable because their partner was observing 
them all the time. But at the end, they were used to working 
together and felt comfortable working in pairs. They also 
described it as a very positive experience. 

The quality of code produced in this experiment was greater 
than the code for other modules produced individually by the 
same developers forming the pair. In fact, this module was the 
module with the smallest number of reported bugs in the entire 
application. Furthermore, both individuals felt comfortable in 
module code refactoring performed later on, during the project. 
Both agreed that the code of this module with the completely 
implemented functionality was smaller and easier to read then 
in case of some other modules (Bipp et al., 2008). 

Pair developers, even those working in the same team from 
the begging of the project, had different working styles before 
the experiment. After the experiment, their styles were still 
different, but much more similar than before, so developers 
understood code written by each other much better.  
 
5. CONCLUSION 
 

We are aware that this experiment would have been better 
if more people, ie. pair programmers had participated in it by 
doing different tasks of various levels of complexity. Further 
studies should include the development of the same modules by 
pair programmers and single developers in the same time to 
obtain more significant results. Even so, this case study was 
valuable to us. Analysis of the results of this experiment has 
shown that in our case it would be good to use pair 
programming for development of modules with complex 
business logic. In scenarios like this we think that among all 
project activities, greatest benefits can be achieved in analysis, 
application design, coding and refactoring. 

In developing small, simple modules and activities such as 
user interface design, testing and bug fixing, single developers 
should be used. 
 
6. REFERENCES 
 
Bipp, T.; Lepper, A. & Schmedding, D. (2008). Information 

and Software Technology. Pair programming in software 
development teams – an empirical study of its benefits, Vol. 
50, No. 3, (February 2008) page numbers (231-240), 
ISSN:0950-5849 

McConnell, S. (2004). Code Complete: A Practical Handbook 
of Software Construction, 2nd edition, Microsoft Press, 
ISBN-10: 0735619670, ISBN-13: 978-0735619678, 
Redmond, Washington 

Muller , M.M. & Padberg  , F. (2004). 10th IEEE International 
Symposium on Software Metrics (METRICS'04), An 
Empirical Study about the Feelgood Factor in Pair 
Programming, pp. 151-158, ISBN: 0-7695-2129-0, 
Chicago, Illinois, USA, September 2004., IEEE Computer 
Society  Washington, DC, USA 

Pilone, D. & Miles, R. (2008). Head First Software 
Development, O'Reilly Media , ISBN-10: 0596527357, 
ISBN-13: 978-0596527358, United States 

Roodyn, N.  (2004). eXtreme .NET: Introducing eXtreme 
Programming Techniques to .NET Developers, Addison-
Wesley Professional, ISBN: 0321303636, New Jersey, 
United States 

Williams, L.; Kessler, R.R.; Cunningham, W. & Jeffries, R. 
(2000). Strengthening the Case for Pair-Programming 
Available from: http://collaboration.csc.ncsu.edu 
/laurie/Papers/ieeeSoftware.PDF  Accessed: 2010-08-18 

Williams, W.M. & Sternberg, R.J. (1988). Intelligence. Group 
intelligence: Why some groups are better than others,  Vol. 
12, No. 4, (October –December 1988) page numbers (351-
77), ISSN: N/A 




