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Abstract: In this paper, we formulate a new economical growth 

model with  logistic population growth and delay. We study 

Hopf bifurcation of this growth model in which production 

occur with delay while new capital is installed (time-to-build). 

The time-to-build technology is shown to yield a system of 

differential functional equations with a steady state. We 

demonstrate that the steady state exhibits the Hopf bifurcation.  
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1. INTRODUCTION  

 

    In this paper, we consider an economical growth model with 

logistic population growth in which production occurs with 

delay while new capital is installed. The optimality conditions, 

due to the introduction of the time delay, lead to  a system of 

functional differential equations.  We determine the steady state 

of this system and we investigate the local stability of the 

steady state by analyzing the corresponding transcendental 

characteristic equation of its linearized system. In the 

following, by choosing of the delay as a bifurcation parameter, 

we show that this model with a delay exhibits the Hopf 

bifurcation as in (Bundău, 2006). Therefore, the dynamics are 

oscillatory and this is entirely due to time-to-build production. 

 

2. SETUP OF THE MODEL 

 

Consider an economy that is inhabited by infinitely-lived 

households that, for simplicity, is normalized to one.  Each 

household has access to a technology that transforms labor L  

and capital K into output Y  by a neoclassical production 

function :F R R  . 

We assume that at time t  household use capital goods 

produced at time t  , therefore the production at time t  is 

given by 

                      ( ) ( ( ), ( ))Y t F K t L t  .                                        (1) 

Denoting the capital per unit of labor by /k K L for any 0L 

we define the production function in intensive form as ( )f k . 

Therefore, f is of class 2C , strictly increasing, strictly 

concave, linearly homogeneous, satisfying (0) 0f  , and the 

Inada conditions 
0

lim '( ) ,
k

f k


 lim '( ) 0.
k

f k


  

The representative household’s preferences are represented by a 

continuous, strictly increasing and concave instantaneous utility 

function ( ( ))U c t  and subject to discount rate  . 

Considering the aggregate consumption ( )C t , the capital 

accumulation equation is given by 

                   ( ) ( ( ), ( )) ( ) ( )K t F K t L t K t C t                        (2) 

where [0,1]   is the rate at which capital depreciates. 

Following (Brida & Accinelli, 2007), the ( )L t  is assumed to 

evolve according to the logistic law  

                            2( ) ( ) ( )L t aL t bL t  ,                            (3) 

with 0.a b   For simplicity, the initial population has been 

normalized to one, 0 1.L   

Using the properties of production function, we can rewritten  

the capital accumulation equation in intensive form, thus 

                  ( ) ( ( )) ( ( ) ) ( ) ( )k t f k t a bL t k t c t                   (4) 

In this economy the representative household chooses at each 

moment in time the level of consumption ( )c t  so that to 

maximize the global utility 

                                              
0

( ( )) tU c t e dt





                              (5) 

subject to the constraint (3),  the budget constraint (4)  and 

                             ( ) ( ); [ ,0];k t t t                                          (6) 

where 0 ( ) ( ( )),c t f k t     ( )k t   is the productive capital 

at time t , and : ( ,0] R    is the initial capital function, it 

need to be specified in order to identify the relevant history of 

the state variable.  

That economical problem, leads us to the following 

mathematical optimization problem (P). 

Problem P. To determine 
* * *( , , )c k L which maximizes the 

following functional     
0

( ( )) tU c t e dt




     and which verifies  

             2

0
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( ) ( ) ( ),

( ) ( ); [ ,0], (0) .

k t f k t a bL t k t c t

L t aL t bL t

k t t t L L

  

 

      

 

   

      (7) 

To solve this optimization problem, we apply the generalized 

Maximal Principle for optimal control problems with delay. 

Analog  to (Asea  & Zac , 2000),   the first order conditions of 

this model do not yield an advanced time argument because the 

co-state variable has the same timing, by convention, as the 

time the decision is made.  

The first order conditions for the  optimization problem (P) are 

              

 

2
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( ) ( ) '( ( ))

''( ( ))
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U c t
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     (8) 

3. LOCAL STABILITY ANALYSIS AND HOPF 

BIFURCATION  

 

Generally, the system (8) is not analytically solvable but we can 

show some qualitative properties of the solutions based on 

(Hale & Lunel, 1993), (Hassard et al, 1981). First, we 

determine the steady states * * *( , , )c k L  of the functional 



 

 

differential equations system (8), which are determined by 

setting  ( ) ( ) ( ) 0c t k t L t   . From (8) it results 

Proposition 3.1. (Stationary state) . The system of functional 

differential equations (8) has a unique steady state * * *( , , )c k L

which is determined by the following equations: 

                  *'( )f k     , * * *( )c f k k  , * a
L

b
 .                (9) 

With respect to the transformation  

         *

1( ) ( )x t c t c  , *

2( ) ( )x t k t k  , *

3( ) ( )x t L t L               (10) 

the system (8) becomes: 
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                               (11) 

where 
* *
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* * 2

3 1 2 3 3 3( ( ), ( ), ( )) ( ( ) ) ( ( ) )F x t x t x t a x t L b x t L      

*
* 1

1 *

1

'( ( ) )
( ( ) )

''( ( ) )

U x t c
g x t c

U x t c


 


 

Expanding 1 2 3, ,F F F , given above, in Taylor series around of

0 (0,0,0)T  and neglecting the terms of order higher than three, 

we can rewrite the system (11) in the form 

2

1 010 2 001 3 020 2 110 1 2

3 2 2

101 1 3 030 2 201 1 3 210 1 2

2

120 1 2

1
( ) ( ) ( ) [ ( ) 2 ( ) ( )

2!

1
2 ( ) ( )] [ ( ) 3 ( ) ( ) 3 ( ) ( )

3!

3 ( ) ( )] ...

x t a x t a x x a x t a x t x t

a x t x t a x t a x t x t a x t x t

a x t x t

  

 



       

      

  

2

2 100 1 010 2 001 3 020 2
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1
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2

3 001 3 002 3

1
( ) ( ) ( ) ...

2!
x t c x t c x t    

where 

* *

010 ( ) ( )a g c f k  , *

001 ( )a bg c  , * *

020 ( ) ( )a g c f k  ,

* *

110 ( ) ( )a g c f k   , *

101 ( )a bg c  , * (4) *

030 ( ) ( )a g c f k  , 

*

201 ( )a bg c  , * *

210 ( ) ( )a g c f k   , * *

120 ( ) ( )a g c f k   , 

100 1b   , *

010 ( )b f k   , *

001b bk , *

020 ( )b f k , 011b b , 

*

030 ( )b f k , 001c a  , 002 2c b  . 

To investigate the local stability of steady state we linearize the 

system (12). Let 1 2( ) ( ( ), ( ))Tu t u t u t , be the linearized system 

variables, then the linearize system of (12) is given by  

                             ( ) ( ) ( )u t Au t Bu t                               (13) 

where 

                
001

100 001

001

0 0

0

0 0

a

A b b

c

 
 

  
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, 
010

010

0 0

0 0

0 0 0

a

B b

 
 

  
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.                     (14) 

The associated characteristic equation of the liniarized system 

of the system  (13) is given by: 

    3 2 2

001 010 100 010 001 010 100 010 001( ) 0c b b a c b b a c e             (15) 

Proposition 3.2. If 0  , then the characteristic equation (15) 

is given by  

                3 2

010 010( ) ( ) 0a a a a a                              (16)  

The equation (16) has one positive eigenvalue and two 
eigenvalues with negative real part. 

Proof: For to determine the sign of the real parts of the roots of  
equation (16), we make use of the following theorem. 

Theorem. The number of roots of the characteristic equation 
with positive real part is equal to the number of variations of 
sign in the scheme 

                   1 ,  a  ,  010
010

a a
a a

a



 


,  010a a  .              (17) 

This is an application of  Routh-Hurwitz theorem.  

In the case 0a   , the sign in  scheme (17) is ( )    .  

In the case 0a   , the sign of the quantities in scheme (17) 

can therefore be either ( )     or ( )    .  

In both circumstances exists only one change of sign, and 
therefore we have one positive eigenvalue and two eigenvalues 
with negative real part. 

 Next, we study the existence of Hopf bifurcation for system (8) 
by choosing the delay  as the bifurcation parameter. 

Proposition 3.3.  Let ( )   be a solution of (15). If c ,  are 

given by 2 4 2

010 010 010

1
4

2
b b a    , 

* *

1
arctan

''( ) ( )
c

f k g c





   

and  
,

R e 0

ci

d

d    



  

 
 

 
 then a Hopf bifurcation occurs at the 

steady state, * * *( , , )c k L when    passes  through c . 

Proof: First, we would like to know when the equation (15) has 

purely imaginary roots i    at c  .  

For i  , from the equation (15) we obtain 

3 * * 2 * *[ ( ) ''( ) ] cos [ ( ) ''( )]sin 0c cg c f k a ag c f k            

2 2 * * * *[ ( ) ''( )]cos [ ( ) ''( ) ] sin 0c ca ag c f k g c f k a            

which implies that 
* *

( )
''( ) ( )

ctg
f k g c


  , so that 

* *

1
arctan

''( ) ( )
c

f k g c





 . Differentiating the equation (15) with 

respect to  , we obtain 
,

Re 0

ci

d

d    



  

 
 

 
. 

 

4. CONCLUSIONS 
 

In this paper, we formulate a growth model with delay for 
capital and with logistic population growth. Using the delay

as a bifurcation parameter we have shown that a Hopf 
bifurcation occurs when this parameter passes through a critical 

value c . 
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