

SIM

Abstract: Thi
system RTMO
teaching aid f
system allows
language with
with Freescal
Mega8 microc
Key words: hc

1. INTRODU

When pro
(RTOS) can b
this task, su
concurrently,
hardware reso
also RTOS ba

On 16-bit
smaller 8-bit s
limited memo
write the requ
RTOS is smal
the same adva
8-bit MCU fro
wanted to inc
lessons we ne
When we look
As mentioned
and 32-bit MC
8 bit MCUs,
distributed und
23 architectur
2001; ***, 2
commercial u
embedded sys
ported to gre
HC08 and Atm

One disad
that it is often
typical RTOS
Ethernet etc.
simple arrange
worry about.
developed at
HC11, and its
would be poss
to implement
our lessons. O
HCS08 deriva
derivatives als
members of H
Atmel AVR A
so the list will
we describe th
microcontrolle
wider options.

MPLE OPE

is paper descr
ON which was
for lessons of m
s students to

h several concur
le HCS08 GB
controllers.
c08, real-time, o

UCTION

ogramming MC
be used to help
uch as need
quick response

ources of the M
sed programmi
or 32-bit MCU

systems it is no
ory and CPU p
uired program w
ll enough to fit
antages as on bi
om the HCS08
clude a RTOS
eeded a RTOS
k at the availab
d above, most o
CUs, but there a

for example,
der GPL licens
res. Another e
010) which is
use. It is sui
stems such as a
eat number of
mel AVR.
dvantage of usi
n quite complex
S for 32 bit M
and even thou

ements, the use
Moreover, w

our institute fo
s interface is kn
sible to choose
a light-weight

Once the syste
ative (GB60) it
so. As a result

HCS08 MCU fa
ATmega8. Addi
l possibly grow
he properties of
ers, the origina
.

Annals of DA

ERATING

DOLINAY

ribes simple r
 developed at

microcontroller
simply write

rrently running
B60 and QE12

operating system

CUs a real tim
solve the usual

for executin
e to high priorit

MCU, etc. In our
ng.

Us, RTOS are u
ot usually so as
power and it i
without RTOS.
t into such MC
igger MCUs. In
family made b
programming
capable of run

ble RTOS there
of them are fo
are some which
FreeRTOS (**

se and currently
example is Mic
s also free for
itable for use
aviation or med

architectures

ing such a pro
x due to the wi
MCU contains
ugh it is confi
er can still have
e already had
or PC based sy
nown to the stu
from existing s
clone of the R

em was up an
t became usefu
t, RTMON cur
amily: GB60 an
ing new deriva

w in the future. I
f the RTMON fo
al system for

AAAM for 2010 &
ISBN 978-3-90

SYSTEM R

Y, J[an]; DOS

real-time oper
our institute

r programming
applications

g processes. It w
28 and Atmel

m, microcontro

me operating sy
l problems relat
ng multiple
ty events, mana
r lessons we inc

used quite ofte
s these systems
is more efficie
Nevertheless, i

CU, it can still
n our lessons w
by Freescale. A
techniques into

nning on this M
e are plenty of t
ocused on bigge
h support also s
**, 2009) whi
y officially port
croC/OS-II (Mo
r educational,

in safety cr
dical systems a
including Free

ofessional syste
ide options it o
s drivers for U
gurable to wo

e too many thin
d an RTOS sy
ystems and als
udents. So, even
systems, we dec
RTMON system
nd running for
ul to port it to
rrently supports
nd QE128, and

ative is quite sim
In the following
or HC08 (and A
PC and HC11

Proceedings of the
01509-73-5, Editor

Make Harm

RTMON F

STALEK, P[e

rating
as a

g. The
in C

works
AVR

oller

ystem
ted to
tasks
aging
clude

n; on
have

ent to
if the
bring

we use
As we
o our

MCU.
them.
er 16
small
ch is
ted to
orton,

non-
ritical
and is
escale

em is
ffers;
USB,
rk in

ngs to
ystem
o for
n if it
cided
m for
r our
other
s two
d also
mple,
g text
AVR)
1 has

2. IM

R
simp
lang
asse
type
once
perio
at c
man
to pe

T
by a
and
prog
and
samp
Cod

I
Typi
max
etc.
also
open

F
usag
for
max
In th
if th
need
and/
the R

T
mom
and
but i
more
even

H
mos
of us

2.1 K
T

a pr
data
cont
can
total
(que
queu
full.
sync

21st International D
B. Katalinic, Publis

mony Between Tech

FOR HC08

etr] & VASEK

MPLEMENT

RTMON is pre
plified for easy
guage except fo
mbler. The sy

es of tasks (proc
e (such proce
odical processe

certain period.
ny applications,
eriodically sam
The RTMON is

a header file. Th
the build pro

gram by includ
adding the libr
ple projects are

deWarrior and A
If needed, use
ically this is u

ximum number
There is docum
projects for th

ned and rebuild
For the sake of
ge, several restr
processes and

ximal number o
he user program
here are fewer
ded for the use
/or stack-pool s
RTMON library
The priority of

ment one task (t
executed on th
it is not possibl
e than the max
n if some proce
However, these
t applications a
se.

Kernel objects
There are only
ocess and a qu

a between proc
taining a “mess
be specified w
l size of RAM
eue pool size).
ue and wait for

This allow
chronization.

DAAAM Symposiu
shed by DAAAM In

hnology and Nature,

MICROCO

K, V[ladimir

TATION OF

e-emptive mult
y use by the
or a small, plat
ystem supports
cesses): normal
esses typically
es which are sta

These periodi
 typically in di

mple the input si
s used as a prec
his simplifies t

ocess. User ena
ding the header
rary to his proj
e available two
Atmel AVR Stu
er can also re
useful to chang
of tasks, length

mentation which
he two supporte
d.
f simplicity of
rictions are app

their stacks i
of processes as
m, it is not poss

processes def
er program, the
size can be chan
y must be rebui
f each task mu
the one with hig
he CPU. Proces
le to free and re
ximal number
sses were previ
e restrictions do
and allow for sm

s
two data structu

ueue. The queue
esses. Several
sage” (data buf
hen creating th

M reserved for
Processes can

r the queue to
ws using a

um, Volume 21, No
nternational, Vienn
, and Your Mind wi

Annals of DA

ONTROLL

r]

THE SYSTE

titasking OS w
students. It is

tform-specific
s execution of

processes whic
contain infin

arted automatic
ical processes
iscrete controlle
gnal and update
compiled librar
the organization
ables RTMON
r file (rtmon.h)
ject. Currently
development t

udio with WinA
ebuild the RT
ge the configu
h of the OS tim
h describes the

ed IDEs, which

both the imple
plied. First, the
s statically all
defined in con

sible to use this
fined. In case
e maximum nu
nged in configu
ild.
ust be unique, s
ghest priority)
sses can be crea
euse memory o
of processes c

iously deleted.
o not present an
mall kernel cod

ures which RTM
es are buffers f
queues can be

ffer) of certain
he queue and is

all buffers of
n read and wr
become empty
queue also

. 1, ISSN 1726-967
a, Austria, EU, 201
ill Fly Free as a Bir

DAAAM Internationa

LERS

EM

which is highly
s written in C
part written in

f two different
ch execute only
nite loop) and
cally by the OS
are useful for

ers which need
e the outputs.
ry accompanied
n of the project

N usage in his
) in his source
the library and

tools: Freescale
AVR suite.
TMON library.
uration such as

me period (tick),
e procedure and
h can be simply

ementation and
RAM memory

located for the
nfiguration file.
s memory even
more RAM is

umber of tasks
uration file and

so that in each
can be selected
ated on the fly,
f a process. No

can be created,

ny problem for
de size and ease

MON contains:
for transferring
e created, each

n size. The size
s limited by the

all the queues
ite data to the

y or to become
for process

9
0

rd
al

y
C
n
t
y
d
S
r
d

d
t
s
e
d
e

.
s
,
d
y

d
y
e
.
n
s
s
d

h
d
,
o
,

r
e

:
g
h
e
e
s
e
e
s

2.2 Kernel operation
The OS uses timer interrupt which occurs at certain period

(e.g. 10 ms) to periodically execute the scheduler, which
decides which process will run in next time slice. The timer
interrupt routine is implemented in assembler for HCS08
MCUs and in C for AVR MCUs. It first stores CPU registers
onto the stack and then calls RTMON kernel, which is a C
function. The kernel then finds the process with highest priority
which is in ready-to-run state and switches the context, so that
the code of this process is executed after return from the
interrupt service routine. If no process is ready to run, then a
special dummy process is executed. This dummy process is
contained within RTMON code and does nothing.

Task descriptor in RTMON is a C-language structure
(IDPROC) which occupies 18 bytes of memory (given that char
is 8-bit and int is 16-bit). The size of RAM required, for
example, for 10 user-defined processes is then 12 x 18 = 216
bytes - there are two extra structures reserved for the init and
dummy processes. The memory consumption may be reduced if
we limit some of the values (e.g. stack size and time intervals)
to 8 bits. This is enabled by RTMON_SMALL directive and it
reduces the size of RAM required for one process to 14 bytes.

There is an array of these structures with the number of
items defined by RTMON_MAXPROCESSES constant in
rtmon configuration file.

The structure for a queue (IDQUEUE) requires 10 bytes of
RAM and similarly as for processes, RTMON allocates array of
IDQUEUE structures with the number of items defined by
RTMON_MAXQUEUES constant.

3. RTMON SERVICES

The OS provides set of services to user applications to
manipulate processes and queues. Each service corresponds to a
function in the RTMON library which user program can call.
The services for processes are as follows:
• Create a process
• Start a process
• Stop a process
• Delay a process
• Continue process execution
• Abort (delete) a process

For queues there are the following functions:
• Create a queue (specify size)
• Write to a queue with or without waiting
• Read from a queue with or without waiting

3.1 Example of usage
To create an application which takes advantage of RTMON th e
uses needs to perform several simple steps:
Step 1: Define variables for process identificators, e.g.:
IDPROC* init, *p1;
Step 2: initialize rtmon (typically in the main function):
rtm_init(&init);
Step 3: Create user processes
rtm_create_p("proc1", 10, proc1, 64, &p1);
This call creates process with priority 10 and stack size of 64
bytes. The body of the process is in function proc1 which
should have the following prototype: void proc1(void). The
variable p1 receives the ID of the newly created process and is
used in all further calls to RTMON services to manipulate this
process.
Step 4: Start one or more processes
rtm_start_p(p1,0,5);
This call starts process p1. The number 0 means that the
process is started immediately (with delay of 0 ticks) and the
number 5 means the process is started with period 5 ticks (it
will be automatically started by RTMON each 5 ticks).

Step 5: Delay the init function
rtm_delay_p(init,0);
By this call the init process (main function) puts itself into
infinite sleep and thus allows other processes to run. At this line
the execution of main stops and it moves to the process with
highest priority.
The code of each user process is contained in a C function.
Example of a simple process can be:
void proc1(void)
{
 rtm_stop_p(p1);
}
This process does nothing, it just calls rtm_stop_p(p1)
informing the system that it stopped execution.

4. CONCLUSION

A simple real-time operating system for Freescale HCS08
microcontrollers has been created, intended as a teaching aid
for lessons of microcontroller programming. Its interface is
based on already existing version of the system for PC and
older HC11 microcontroller, but the internals have been written
completely for the scratch to allow it to work with limited data
and code memory of small 8-bit microcontrollers. RTMON is a
pre-emptive multitasking system which allows defining
processes up to certain number (typically 10) and running these
processes either in infinite loops or periodically with given
period.

The available functions are very simple due to the limited
memory of the target microcontrollers and intended use of the
system, but still the system provides the advantage of easy
implementation of embedded system as a set of independent,
concurrently running tasks.

The main limitation of current implementation can be seen
in the relatively wasteful use of RAM memory for process
stacks and queues which are allocated at build-time of the
RTMON library and must be therefore defined in close relation
with intended application, number of processes and their
contents. This implementation is advantageous for school
exercises because it allows easier usage, but for practical use in
the industry it is not comfortable as it requires rebuilding the
library for each application. However, this rebuild is not a
difficult task, so even in this implementation the system is
usable.

 Currently, RTMON is ported to Freescale HCS08 GB60
and QE128 derivatives and to Atmel AVR Mega8. The source
is structured for easy modification and porting to other
platforms. For the future it would obviously be desirable to port
it to different MCUs, but also to extend the functionality by
some I/O drivers, such us driver for general purpose inputs and
outputs, serial communication etc.

5. ACKNOWLEDGEMENTS

This work was supported by research project MSM
7088352102. This support is very gratefully acknowledged.

6. REFERENCES

Morton, T. D. (2001). Embedded Microcontrollers, Prentice

Hall, ISBN 0-13-907577, Upper Saddle River.
*** (2009) http://www.freertos.org/ - The FreeRTOS Project,

Accessed on: 2010-02-27
*** (2010) http://micrium.com/page/products/rtos/os-ii -

Micrium RTOS and Tools, Accessed on 2010-05-05
*** (2009) http://www.freescale.com – Freescale 8-bit

Microcontrollers, Accessed on 2009-12-12
*** (2010) - http://www.atmel.com, Atmel 8 and 32-bit MCUs,

Accessed on 2010-05-12

