Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679
ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals of DAAAM International

SIMPLE OPERATING SYSTEM RTMON FOR HC08 MICROCONTROLLERS

DOLINAY, J[an]; DOSTALEK, P[etr] & VASEK, V[ladimir]

Abstract: This paper describes simple real-time operating
system RTMON which was developed at our institute as a
teaching aid for lessons of microcontroller programming. The
system allows students to simply write applications in C
language with several concurrently running processes. It works
with Freescale HCS08 GB60 and QE128 and Atmel AVR
Mega8 microcontrollers.

Key words: hc08, real-time, operating system, microcontroller

1. INTRODUCTION

When programming MCUs a real time operating system
(RTOS) can be used to help solve the usual problems related to
this task, such as need for executing multiple tasks
concurrently, quick response to high priority events, managing
hardware resources of the MCU, etc. In our lessons we include
also RTOS based programming.

On 16-bit or 32-bit MCUs, RTOS are used quite often; on
smaller 8-bit systems it is not usually so as these systems have
limited memory and CPU power and it is more efficient to
write the required program without RTOS. Nevertheless, if the
RTOS is small enough to fit into such MCU, it can still bring
the same advantages as on bigger MCUs. In our lessons we use
8-bit MCU from the HCS08 family made by Freescale. As we
wanted to include a RTOS programming techniques into our
lessons we needed a RTOS capable of running on this MCU.
When we look at the available RTOS there are plenty of them.
As mentioned above, most of them are focused on bigger 16
and 32-bit MCUs, but there are some which support also small
8 bit MCUs, for example, FreeRTOS (***, 2009) which is
distributed under GPL license and currently officially ported to
23 architectures. Another example is MicroC/OS-Il (Morton,
2001; *** 2010) which is also free for educational, non-
commercial use. It is suitable for use in safety critical
embedded systems such as aviation or medical systems and is
ported to great number of architectures including Freescale
HCO08 and Atmel AVR.

One disadvantage of using such a professional system is
that it is often quite complex due to the wide options it offers;
typical RTOS for 32 bit MCU contains drivers for USB,
Ethernet etc. and even though it is configurable to work in
simple arrangements, the user can still have too many things to
worry about. Moreover, we already had an RTOS system
developed at our institute for PC based systems and also for
HC11, and its interface is known to the students. So, even if it
would be possible to choose from existing systems, we decided
to implement a light-weight clone of the RTMON system for
our lessons. Once the system was up and running for our
HCSO08 derivative (GB60) it became useful to port it to other
derivatives also. As a result, RTMON currently supports two
members of HCS08 MCU family: GB60 and QE128, and also
Atmel AVR ATmega8. Adding new derivative is quite simple,
so the list will possibly grow in the future. In the following text
we describe the properties of the RTMON for HCO08 (and AVR)
microcontrollers, the original system for PC and HC11 has
wider options.

2. IMPLEMENTATION OF THE SYSTEM

RTMON is pre-emptive multitasking OS which is highly
simplified for easy use by the students. It is written in C
language except for a small, platform-specific part written in
assembler. The system supports execution of two different
types of tasks (processes): normal processes which execute only
once (such processes typically contain infinite loop) and
periodical processes which are started automatically by the OS
at certain period. These periodical processes are useful for
many applications, typically in discrete controllers which need
to periodically sample the input signal and update the outputs.

The RTMON is used as a precompiled library accompanied
by a header file. This simplifies the organization of the project
and the build process. User enables RTMON usage in his
program by including the header file (rtmon.h) in his source
and adding the library to his project. Currently the library and
sample projects are available two development tools: Freescale
CodeWarrior and Atmel AVR Studio with WinAVR suite.

If needed, user can also rebuild the RTMON library.
Typically this is useful to change the configuration such as
maximum number of tasks, length of the OS time period (tick),
etc. There is documentation which describes the procedure and
also projects for the two supported IDEs, which can be simply
opened and rebuild.

For the sake of simplicity of both the implementation and
usage, several restrictions are applied. First, the RAM memory
for processes and their stacks is statically allocated for the
maximal number of processes as defined in configuration file.
In the user program, it is not possible to use this memory even
if there are fewer processes defined. In case more RAM is
needed for the user program, the maximum number of tasks
and/or stack-pool size can be changed in configuration file and
the RTMON library must be rebuild.

The priority of each task must be unique, so that in each
moment one task (the one with highest priority) can be selected
and executed on the CPU. Processes can be created on the fly,
but it is not possible to free and reuse memory of a process. No
more than the maximal number of processes can be created,
even if some processes were previously deleted.

However, these restrictions do not present any problem for
most applications and allow for small kernel code size and ease
of use.

2.1 Kernel objects

There are only two data structures which RTMON contains:
a process and a queue. The queues are buffers for transferring
data between processes. Several queues can be created, each
containing a “message” (data buffer) of certain size. The size
can be specified when creating the queue and is limited by the
total size of RAM reserved for all buffers of all the queues
(queue pool size). Processes can read and write data to the
queue and wait for the queue to become empty or to become
full. This allows wusing a queue also for process
synchronization.

2.2 Kernel operation

The OS uses timer interrupt which occurs at certain period
(e.g. 10 ms) to periodically execute the scheduler, which
decides which process will run in next time slice. The timer
interrupt routine is implemented in assembler for HCS08
MCUs and in C for AVR MCUs. It first stores CPU registers
onto the stack and then calls RTMON kernel, which is a C
function. The kernel then finds the process with highest priority
which is in ready-to-run state and switches the context, so that
the code of this process is executed after return from the
interrupt service routine. If no process is ready to run, then a
special dummy process is executed. This dummy process is
contained within RTMON code and does nothing.

Task descriptor in RTMON is a C-language structure
(IDPROC) which occupies 18 bytes of memory (given that char
is 8-bit and int is 16-bit). The size of RAM required, for
example, for 10 user-defined processes is then 12 x 18 = 216
bytes - there are two extra structures reserved for the init and
dummy processes. The memory consumption may be reduced if
we limit some of the values (e.g. stack size and time intervals)
to 8 bits. This is enabled by RTMON_SMALL directive and it
reduces the size of RAM required for one process to 14 bytes.

There is an array of these structures with the number of
items defined by RTMON_MAXPROCESSES constant in
rtmon configuration file.

The structure for a queue (IDQUEUE) requires 10 bytes of
RAM and similarly as for processes, RTMON allocates array of
IDQUEUE structures with the number of items defined by
RTMON_MAXQUEUES constant.

3. RTMON SERVICES

The OS provides set of services to user applications to
manipulate processes and queues. Each service corresponds to a
function in the RTMON library which user program can call.
The services for processes are as follows:

e Create a process

Start a process

Stop a process

Delay a process

Continue process execution

Abort (delete) a process

For queues there are the following functions:

o Create a queue (specify size)

e Write to a queue with or without waiting

o Read from a queue with or without waiting

3.1 Example of usage

To create an application which takes advantage of RTMON th e
uses needs to perform several simple steps:

Step 1: Define variables for process identificators, e.g.:
IDPROC¥ init, *p1;

Step 2: initialize rtmon (typically in the main function):
rtm_init(&init);

Step 3: Create user processes

rtm_create_p(“procl", 10, procl, 64, &pl);

This call creates process with priority 10 and stack size of 64
bytes. The body of the process is in function procl which
should have the following prototype: void procl(void). The
variable p1 receives the ID of the newly created process and is
used in all further calls to RTMON services to manipulate this
process.

Step 4: Start one or more processes

rtm_start_p(p1,0,5);

This call starts process pl. The number 0 means that the
process is started immediately (with delay of 0 ticks) and the
number 5 means the process is started with period 5 ticks (it
will be automatically started by RTMON each 5 ticks).

Step 5: Delay the init function

rtm_delay_p(init,0);

By this call the init process (main function) puts itself into
infinite sleep and thus allows other processes to run. At this line
the execution of main stops and it moves to the process with
highest priority.

The code of each user process is contained in a C function.
Example of a simple process can be:

void procl(void)

rtm_stop_p(pl);

This process does nothing, it just calls rtm_stop_p(pl)
informing the system that it stopped execution.

4. CONCLUSION

A simple real-time operating system for Freescale HCS08
microcontrollers has been created, intended as a teaching aid
for lessons of microcontroller programming. Its interface is
based on already existing version of the system for PC and
older HC11 microcontroller, but the internals have been written
completely for the scratch to allow it to work with limited data
and code memory of small 8-bit microcontrollers. RTMON is a
pre-emptive multitasking system which allows defining
processes up to certain number (typically 10) and running these
processes either in infinite loops or periodically with given
period.

The available functions are very simple due to the limited
memory of the target microcontrollers and intended use of the
system, but still the system provides the advantage of easy
implementation of embedded system as a set of independent,
concurrently running tasks.

The main limitation of current implementation can be seen
in the relatively wasteful use of RAM memory for process
stacks and queues which are allocated at build-time of the
RTMON library and must be therefore defined in close relation
with intended application, number of processes and their
contents. This implementation is advantageous for school
exercises because it allows easier usage, but for practical use in
the industry it is not comfortable as it requires rebuilding the
library for each application. However, this rebuild is not a
difficult task, so even in this implementation the system is
usable.

Currently, RTMON is ported to Freescale HCS08 GB60
and QE128 derivatives and to Atmel AVR Mega8. The source
is structured for easy modification and porting to other
platforms. For the future it would obviously be desirable to port
it to different MCUSs, but also to extend the functionality by
some 1/O drivers, such us driver for general purpose inputs and
outputs, serial communication etc.

5. ACKNOWLEDGEMENTS

This work was supported by research project MSM
7088352102. This support is very gratefully acknowledged.

6. REFERENCES

Morton, T. D. (2001). Embedded Microcontrollers, Prentice
Hall, ISBN 0-13-907577, Upper Saddle River.

*** (2009) http://www.freertos.org/ - The FreeRTOS Project,
Accessed on: 2010-02-27

*** (2010) http://micrium.com/page/products/rtos/os-ii -
Micrium RTOS and Tools, Accessed on 2010-05-05

*** (2009) http://lwww.freescale.com — Freescale 8-bit
Microcontrollers, Accessed on 2009-12-12

*** (2010) - http://www.atmel.com, Atmel 8 and 32-bit MCUs,
Accessed on 2010-05-12

