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2.2 Kernel operation 
The OS uses timer interrupt which occurs at certain period 

(e.g. 10 ms) to periodically execute the scheduler, which 
decides which process will run in next time slice. The timer 
interrupt routine is implemented in assembler for HCS08 
MCUs and in C for AVR MCUs. It first stores CPU registers 
onto the stack and then calls RTMON kernel, which is a C 
function. The kernel then finds the process with highest priority 
which is in ready-to-run state and switches the context, so that 
the code of this process is executed after return from the 
interrupt service routine. If no process is ready to run, then a 
special dummy process is executed. This dummy process is 
contained within RTMON code and does nothing. 

Task descriptor in RTMON is a C-language structure 
(IDPROC) which occupies 18 bytes of memory (given that char 
is 8-bit and int is 16-bit). The size of RAM required, for 
example, for 10 user-defined processes is then 12 x 18 = 216 
bytes - there are two extra structures reserved for the init and 
dummy processes. The memory consumption may be reduced if 
we limit some of the values (e.g. stack size and time intervals) 
to 8 bits. This is enabled by RTMON_SMALL directive and it 
reduces the size of RAM required for one process to 14 bytes. 

There is an array of these structures with the number of 
items defined by RTMON_MAXPROCESSES constant in 
rtmon configuration file.  

The structure for a queue (IDQUEUE) requires 10 bytes of 
RAM and similarly as for processes, RTMON allocates array of 
IDQUEUE structures with the number of items defined by 
RTMON_MAXQUEUES constant. 
 
3. RTMON SERVICES 
 
The OS provides set of services to user applications to 
manipulate processes and queues. Each service corresponds to a 
function in the RTMON library which user program can call. 
The services for processes are as follows: 
• Create a process 
• Start a process  
• Stop a process 
• Delay a process 
• Continue process execution 
• Abort (delete) a process  
 
For queues there are the following functions: 
• Create a queue (specify size) 
• Write to a queue with or without waiting  
• Read from a queue with or without waiting 
 
3.1 Example of usage  
To create an application which takes advantage of RTMON th e 
uses needs to perform several simple steps: 
Step 1: Define variables for process identificators, e.g.: 
IDPROC* init, *p1;  
Step 2:  initialize rtmon (typically in the main function): 
rtm_init(&init); 
Step 3: Create user processes 
rtm_create_p("proc1", 10, proc1, 64, &p1); 
This call creates process with priority 10 and stack size of 64 
bytes. The body of the process is in function proc1 which 
should have the following prototype: void proc1(void). The 
variable p1 receives the ID of the newly created process and is 
used in all further calls to RTMON services to manipulate this 
process. 
Step 4: Start one or more processes 
rtm_start_p(p1,0,5); 
This call starts process p1. The number 0 means that the 
process is started immediately (with delay of 0 ticks) and the 
number 5 means the process is started with period 5 ticks (it 
will be automatically started by RTMON each 5 ticks). 

Step 5: Delay the init function 
rtm_delay_p(init,0); 
By this call the init process (main function) puts itself into 
infinite sleep and thus allows other processes to run. At this line 
the execution of main stops and it moves to the process with 
highest priority.  
The code of each user process is contained in a C function. 
Example of a simple process can be: 
void proc1(void) 
{ 
   rtm_stop_p(p1); 
} 
This process does nothing, it just calls rtm_stop_p(p1) 
informing the system that it stopped execution.  
 
4. CONCLUSION 
 

A simple real-time operating system for Freescale HCS08 
microcontrollers has been created, intended as a teaching aid 
for lessons of microcontroller programming. Its interface is 
based on already existing version of the system for PC and 
older HC11 microcontroller, but the internals have been written 
completely for the scratch to allow it to work with limited data 
and code memory of small 8-bit microcontrollers. RTMON is a 
pre-emptive multitasking system which allows defining 
processes up to certain number (typically 10) and running these 
processes either in infinite loops or  periodically with given 
period.  

The available functions are very simple due to the limited 
memory of the target microcontrollers and intended use of the 
system, but still the system provides the advantage of easy 
implementation of embedded system as a set of independent, 
concurrently running tasks. 

The main limitation of current implementation can be seen 
in the relatively wasteful use of RAM memory for process 
stacks and queues which are allocated at build-time of the 
RTMON library and must be therefore defined in close relation 
with intended application, number of processes and their 
contents. This implementation is advantageous for school 
exercises because it allows easier usage, but for practical use in 
the industry it is not comfortable as it requires rebuilding the 
library for each application. However, this rebuild is not a 
difficult task, so even in this implementation the system is 
usable. 

  Currently, RTMON is ported to Freescale HCS08 GB60 
and QE128 derivatives and to Atmel AVR Mega8. The source 
is structured for easy modification and porting to other 
platforms. For the future it would obviously be desirable to port 
it to different MCUs, but also to extend the functionality by 
some I/O drivers, such us driver for general purpose inputs and 
outputs, serial communication etc.  
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