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Abstract: Due to the increase in world population along with changing customer 
demands and market dynamics, new challenges are arising for the food production 
industry. Novel approaches based on digitalization, smart manufacturing and the 
cognitive factory that are announced for transition to Industry 4.0., are compatibly 
required in the food production to meet the present and future needs effectively and 
reliably. Therefore, in this study, we modeled and implemented an integrated system 
of wireless sensor network (WSN), cloud and big data in the scope of future food 
production process, which will collect, transform and process the sensor data of the 
production line of a real food production facility. This approach targets higher 
efficiency, productivity, quality in addition to improving asset utilization by optimized 
resource management and waste. Furthermore, the addition of statistical 
methodologies and presenting the results via a web-based real-time data display 
applications will offer a high level of user interaction and monitoring in digital smart 
manufacturing that provides flexibility, efficiency and quality of production process.  
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1. Introduction 
 

 Food demand in correlation with population has increased all over the world over 
the last decades. To meet this increasing demand and to supply enough products to the 
market, producers require new and disruptive techniques and methodologies. There are 
several factors that affect food production and final products. Environmental factors 
and productivity have to be considered hand in hand using minimum resources with a 
result of minimum waste. 
 More efficient, cost-effective and less waste manufacturing has been demanded 
by production facilities throughout decades. Several academic studies and commercial 
solutions are provided in the literature to increase the efficiency and quality of 
production. One of the latest approaches to this problem is the “Industry 4.0”. Zhou et. 
al. (Zhou, Liu, & Zhou, 2015) published in 2011 as a study of the German government. 
It was named as fourth stage of industrialization after mechanization, electrification 
and information stage. This change has influenced not only the German industry, but 
also international industrial development. In recent years, this change has been 
discussed by the industry and academics all over Europe. Main focus lies on the 
improvement of today’s production system and on increasing the awareness of 
digitalization (Smit, Kreutzer, Moeller, & Carlberg, 2016). The study provides some 
general information about digitalization. It defines the main steps of digitalization for 
every stage of the production. Once these steps are applied to the production line, 
machine-to-human and machine-to-machine communication infrastructure can be 
developed and this interaction model may change the production model in the industry 
while creating an “Intelligent manufacturing Systems”. 
 New approaches, such as digitalization, smart manufacturing, and the cognitive 
factory, which are announced with transition to the Industry 4.0, affect not only 
efficiency and quality of production process but also the environmental management. 
In this framework, the factories need to remotely monitor the critical production 
locations in terms of environmental conditions. In this study, we worked on the 
implementation of digitalization in a confectionery factory. The factory has critical 
places on the production line that they have to monitor and keep under control. At the 
moment, the production line is controlled by human workers. However, our 
implementation of remote monitoring and control will bring the factory’s technology 
level to a step closer as the target of European Union strategy for digitalization. 
 In our study, we researched for the best performance. The study of Lin et. al. 
(Lin, Liu, & Fang, 2007)suggested the ZigBee technology which is a wireless protocol 
that is used in the industry and it is believed that it provides the best performance in 
reliability, power profile, capability, flexibility and cost. Therefore, in our setup, we 
embedded the ZigBee system into the WSN system using the mesh topology. 
 To implement an adaptive intelligent system, a literature research was carried 
out. Bas et. al. (Bas, Stoev, & Durakbasa, 2015) worked on increasing product quality 
in the production line by integrating a high precision measurement approach. 
Yerofeyev et. al. (Yerofeyev, Ipatov, Markov, Potekhin, Sulerova, & Shkodyrev, 2015) 
worked on adaptive intelligent manufacturing control systems and the design of 
processes. In their study, they also worked on the problem of automating the lifecycle 
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of the product. Gregor et. al. (Gregor, Krajcovic, Hnát, & Hancinsky, 2015) referenced 
the cyber physical systems (CPS) and used it for providing machine-to-machine 
(M2M) connectivity, planning and adaptation of personal behavior according to 
ambient conditions, learning of new models and ways of behavior and interpreting 
information about the environment. It provides an effective release of products. We 
have used a similar approach for implementation of the digitalization steps to the real 
production system. The results of the implementation can be used for M2M 
communication for the transformation to the smart production system. The system can 
provide a self-reaction for the changing environmental conditions and it can be more 
efficient and faster than traditional management systems. 
 For decision making algorithms from computer science such as the one 
developed by Miroslav et. al. (Miroslav, Milan, & Tomás, 2015) in the productive 
manufacturing has been studied. Intelligent systems can contribute to significant 
reduction of time necessary to design and verify the manufacturing system within the 
Digital Factory concept. In our study, statistical prediction models were used since we 
need to work on time series analysis. According to experiments, our prediction models 
obtained 99% of accuracy rate. Initial models are generated by using R statistical 
software (https://www.r-project.org/, 2017). The statistical models are used not only 
for the sensors data but also for the nodes. These results of the study contributed to 
make production planning and control more accurate. 
 Other studies that have been considered included high-end communication and 
data transfer for monitoring the production of factories. Miroslav et. al. (Miroslav, 
Milan, & Tomás, 2015) were created experiments on the mobile technologies with real 
time monitoring and control for manufacturing facilities. Their work shows that the 
mobile monitoring and control system is not suitable for fast real systems on GSM 
GPRE/EDGE networks. In mobile networks UMTS and especially LTE can be used 
monitoring and control systems faster. So we try to minimize the disadvantage of the 
mobile monitoring by releasing a report of information by means of a webpage. This 
reporting system is accessible not only from the mobile phone but also from the 
desktop/laptop/Tablet. Osanna et. al. (Osanna, Durakbasa, Si, & Afjehi-Sadat, 2001) 
worked on quality improvement models designed for intelligent manufacturing, which 
includes metrology methodologies. 
 They offered multi-functions integrated factory phenomenon which is an 
innovative concept and a new model. The model was proposed for similar facilities to 
switch to a cost-effective and customer-driven manufacturing. Industry 4.0 represents 
the digital transformation of production systems with advances in information and 
communication technologies. Digitalization and the intelligent system can help to 
achieve lower manufacturing costs and at the same time higher quality, accuracy and 
efficiency in present production. This approach was used in our work for the 
improvement of the TQM model. Total quality management (TQM) is consisting of 
process management, process improvement, resource management, process planning 
(Morath & Doluschitz, 2009).  
 In our study, we worked on speeding up the manufacturing, with minimum 
resources, best quality and at lower prices with using the information of the 
environmental. There are various methodologies to enhance the efficiency of 
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production systems where quality management is one of the most used applications. 
 We have used WSNs, industrial internet of things (IIoT) and statistical prediction 
model techniques to increase the effectiveness, speed and reliability of quality 
management methodologies used for production systems. 
 To increase the efficiency and quality of production process, we have used 
digitalization and industry 4.0 components such as WSN, IoT, cyber security, big data, 
cloud, and statistical prediction models; and managed to create a system that processes 
the sensor data which is transformed and collected from the candy production line. The 
data is collected by the sensor nodes that are portable, smart and ready to make an 
M2M communication. The collected data sent to the cloud to be stored, processed and 
evaluated. The data is processed into sensible information by a central mechanism, 
which uses known statistical methodologies such as auto regressive models and box-
cox normalization. 
 To benefit from this information, we have published the real time data via a web-
based portal, which is designed as user friendly as possible. As a sample, the result of 
environmental condition of Node 4 (packaging) given at the discussion part. Results 
show that duration of optimal production environment is only 4% of total monitoring 
period. Moreover, we found that environmental condition of packaging division is 
usually above the expected conditions. In this study, the smart production steps have 
been done on the real candy factory and running the production line. Auto-regressive 
models were chosen for each sensor and nodes to make predictions about future 
information predictions. Since each node can contain multiple sensors, we applied 
statistical normalization methods to generate information about overall node status and 
compared performance of the methods in this study. As a future work, we will study 
on new prediction models to compare the results of the performance with auto 
regressive models.  
 This document is organized as follows: After the Introduction section and related 
studies, methodology section is provided. Conclusion section is given at the end. 
 
2. Methodology 

 
 The increase in global food demand affected the production rate of factories. 
Manufacturing systems became more complicated over time to meet the increasing 
production rate. On the other hand, environmental factors have always been a problem 
that affects the food production quality and stability. To solve such problems, new 
concepts and solutions are added to the processes. 
 Digitalization of the food production is one of the assisting solutions for the 
problems discussed above. In this study, we have used digitalization components to 
detect and predict the environmental problems of actual confectionery factories in the 
critical point on the production line (raw candy mixer), storage and packaging units 
based on environmental factors. The selected locations cover only 20% of the 
production line, so additional work is required to model whole production process.  
 The components that are used are WSN, cyber-security, big data, cloud, 
statistical modeling and web-based monitoring to assist in solving or early diagnosis 
of the environmental problems. Components of industry 4.0 such as robotics, 3D 
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printers, etc. are excluded from this work; hence we only focused on monitorization of 
a food production line. These include robotic and so on. Four critical locations mixer, 
wind tunnel, aging room and packaging from the production line which they are the 
parts of the automation system were chosen. This digitalization implementation steps 
are given below; 
 
2.1 Internet of Things (Iot) and Wireless Sensor Network (WSN): 

IoT and WSN are used for gathering the large amounts of environmental data from the 
sensor networks to use for monitoring and the prediction models. The Atmel based 
microcontroller (MCU) has been used for the development of the embedded system. 
Four nodes which consist of sensors and ZigBee model was developed on it. Atmel 
based embedded system may have various features depending on application. In this 
study, wireless communication was required since there were moving parts in the setup. 
The ZigBee module is chosen for this study because of its communication protocol 
developed for industrial IoT (Communication protocol). Five nodes, including both its 
hardware and software, are designed and integrated with the sensors within the ZigBee 
module. Four nodes collect data from the environment and the node 1(coordinator) 
directs the data to the cloud to monitor and process in real time. Sensor nodes and 
coordinator communicates with each other via ZigBee communication protocol which 
uses IEEE 802.15.4 standard. There are several reasons to choose ZigBee and mesh 
networking for this project and some of them are; 

• Carry data at far distances compared to the same propagation power 
• Reliable link (High SNR-BER performance)  
• Low power requirement (In terms of high range) 
• Mesh network support (Alternative link support from node to sink) 

o multiple data paths 
o multi-hop,  
o self-configuration and self-healing 

• Easily accessible network authentication (Joining network is relatively fast) 

 Because of the noise generated by machines and closed area of the production 
line, small data transmission delays between sensors are detected. We solve this issue 
by using a new node board capable to cache previous data. More accurate results could 
be obtained by using wired structure or open space instead of WSN. ZigBee protocol 
uses direct Sequence Spread Spectrum encoding. With this coding, 4-bit message data 
is encoded to 32 bits chip value. This encoding and decoding algorithm causes gain of 
about 9 dB signal-to-noise ratios while reducing the data rate. However, sensors data 
output rate per node is approximately 15 bytes per second and ZigBee can support up 
to 250 kbps data rate. Thus, XBEE pro transceiver modules are chosen for this project. 
 Low data rate is not a bottleneck in this study because the data received from the 
sensor used in the plant is very low compared to this data rate. XBee Pro S2C (63 mW), 
which communicates on 2400 MHz – 2483.5 MHz Industrial Scientific Medical ISM 
band identified by IEEE 802.15.4 standard (IEEE, 2016). The ISM band is the band 
allowed to use without a license. This band can communicate with RF signals without 
paying any fee. IEEE 802.15.4 PHY frequency definitions are listed in Tab. 1 below:   
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Frequency band 

identifier 
Frequency band (MHz) Band 

designation 
0 169.400–169.475 169 MHz 
1 433.050–434.790 433 MHz 
2 450–470 450 MHz 
3 470–510 470 MHz 
4 779–787 780 MHz 
5 863–876 863 MHz 
6 896–901 896 MHz 
7 901–902 901 MHz 
8 902–928 915 MHz 
9 915–921 918 MHz 
10 917–923.5 917 MHz 
11 928–960 928 MHz 
12 1427–1518 1427 MHz 
13 2400–2483.5 2450 MHz 

Tab. 1. IEEE 802.15.4 PHY frequency definitions. 
 
 For the microcontroller units, Atmel 32-bit and 16-bit are used for design of the 
5 nodes to data gathering. Four of which collect data from the environment and 1 
(coordinator) directs the data to the cloud. XBee Pro information indicates that the 
range of communication is almost 1200 meters in line of sight outdoor and drops down 
to 60 meters indoor. That’s why mesh network topology is used to communicate the 

nodes. The cooperative communication enables us to reach higher ranges, with the help 
of mesh network topology, allowing the sensor to increase its range by using other 
sensors closed to the coordinator node as the distance of the sensor does not reach the 
coordinator node. Designed network structure is consisted of 1 coordinator module and 
4 router modules. The leaf type node structure is not used instead of router nodes for 
collecting data from sensors because router nodes support the cooperative 
communication. So, this configuration extends network range. Thus, data can be 
transmitted to the coordinator by passing over other nodes and this reduces the energy 
consumption resulting a higher duration. The designed structure is given at Fig. 1:  
 

 
Fig. 1. Node’s Mesh Network topology. 
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Sensor types according to nodes are given in Tab. 2. 
 
Node 1 Node 2 Node 3 Node 4 

Pressure Fire Fire Fire 
Humidity Distance Humidity Humidity 
Temperature Light Temperature Temperature 
 Noise  Movement 

Product 
Temperature 
Mixer Temperature 

Light 
Noise 
 

Tab. 2. Sensors of Nodes. 
 
All the nodes are designed and created with the same principles and methodologies. 
However, exact requirements and solutions for specific locations in the production line 
differentiate the modules integrated into each individual node. As an example, Node 4 
has flame sensor, noise sensor and mainboard (on board sensors: motion, light, 
humidity and temperature) components. The structure of Node 4 is given in Fig. 2 and 
the communication structure of node 4 is given in Fig. 3 as well as the real application 
and image of node 4 in Fig. 4 respectively.  
 

 
Fig. 2. Node 4’s the mainboard. 
 

 
Fig. 3. Communication structure for node 4. 
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Fig. 4. Node 4 settled on the production line. 
 
2.2 Cyber Security 

All collected data are encrypted in the node by the ZigBee module and forwarded to 
the coordinator. Coordinator uses 128-bit hardware level encryption algorithm for the 
security of the collected data. After encryption, the data is send to the cloud. Thus, the 
confidentiality of the collected data is protected against attack from both inside and 
outside. 
 
2.3 Cloud and Web-Based Monitoring 
In this study, the Google Cloud Platform has been used Infrastructure as a service 
(IaaS). Google Cloud provides mobility, storage and analyze of data collected via IoT. 
This data can then be systematically analyzed via statistical prediction models that are 
located in the cloud. For this target, 2.869.379 data values which are gathered from the 
sensors representing the status and condition of each node are collected and stored in 
the cloud as big data. This big data is used by the statistical model for the prediction 
and generation of sensible information. 
 The web-based monitoring system is used for displaying instant status, historical 
status information and future estimation information. Data are received from the cloud 
with equal intervals and reported periodically. The information is published via a 
webpage and it can be accessible not only from the mobile phone but also from the 
desktop.  Thus, the accessibility problems are minimized (Miroslav, Milan, & Tomás, 
2015). Status information consists of three different kinds of data which are gathered 
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from 17 sensors of 4 major nodes in the system. Three different groups of data are 
shown on the monitoring system. The first group has data representing raw (not 
processed) sensor status information, the second group has data containing meaningful 
(processed data) sensor status information and the third group has data that has general 
status of the nodes. The pages provide general status information about last 10 seconds 
of the system as well as the nodes’ meaningful (processed data) status information. 

This meaningful status information from the nodes shows the trend of the system. 
  
 The real-time monitoring system displays the status of each individual node in 
separate pages. Every page has different number of components which reflects the 
sensors embedded in the node. As an example, “Node 4” (Packaging) page displays 

the data of 6 sensors and the general situation information and the page is visualized in 
Fig. 5 below. 
 

 
Fig. 5. Node 4 Web-based demonstration page. 
 
2.4 Statistical Prediction Modeling 

 
All collected sensor data systematically analyzing via statistical prediction models. The 
simple linear regression model is used for statistical prediction model which 
implemented to each sensor data to make condition prediction and to make sensible 
information of the sensor. 
 
Our models are statistically meaningful according to the p-values of F-test (p<0.05). 
Depending on R-squared values of 15 models are above 90% that means they explain 
90% of the variation of the following values which is given below Tab. 3. So, we may 
say that the models can be used for making predictions.  
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Tab. 3. Model’s sensor performances. 
 
Each node of our system contains multiple sensors and each sensor has its own 
measurement scales. Hence, it is hard to measure overall environmental status of a 
node. We applied statistical normalization and weighting to infer environmental 
information about nodes. 
First, we need determined the weights of the sensor for each node to summarize node 
status. However, there is no standardized weights exists for candy production line 
environment. Environmental status of the production line is also considered as a trade 
secret for a factory. So, we used sensor weights for each node determined by factory 
experts. Later, we aim to determine effects of each sensor on final product quality. 
Although we obtained sensor weights for each node, we are still unable to use them 
because of sensor scale differences. Thus, we applied statistical normalization methods 
to make sensor measurements have same statistical distribution, which is chosen 
standard normal distribution (X~N(0,1)). We also measured effects of two different 
normalization approaches. First, we convert raw data to standard normal distribution 
as follows; 
 

𝑁𝑋 =
𝑋 − 𝜇𝑋
𝜎𝑋

 

 
where 𝑁𝑋 is normalized data, X is raw data, 𝜇𝑋 is mean of X and 𝜎𝑋 is standard 
deviation of X. This conversion does not change distribution shape of original data, 
and ensures that mean and standard deviation of the data becomes 0 and 1 respectively. 
We also use power transformation (Box, G. E. P.; Cox, D. R., 1964) to normalize data. 
Power transformation is a monotonic transformation for raw data using power 
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functions. This normalization method stabilizes the standard deviation and aims to 
change the distribution of data to a normal-like distribution. Power transform defined 
as follows; 
 

𝑁𝑋
(𝜆)

= {

𝑋𝜆 − 1

𝜆(𝐺𝑀(𝑋))𝜆−1
, 𝜆 ≠ 0

𝐺𝑀(𝑋) ln(𝑋) , 𝜆 = 0

 

 
and 
 

𝐺𝑀(𝑋) = (∏𝑥𝑖

𝑛

𝑖=1

)

1
𝑛

 

 
where 𝜆 is the normalization parameter. However, 𝜆 parameter of the power transforms 
needs to be determined for each sensor data. We used maximum-likelihood approach 
to determine 𝜆 parameter. As a result, we have multiple normal-like distributions of 
sensor data. However, parameters of each sensor data distribution after power 
transform are different. To solve this issue, we applied standard normalization to power 
transformed values to equalize distribution parameters of each sensor data. 
When we achieved equality of distribution of each sensor data by applying 
normalization approaches, we calculate overall node status values based on following 
formula; 
 

𝑆𝑁𝑜𝑑𝑒 =∑𝑤𝑖𝑁𝑋,𝑖

𝑛

𝑖=0

 

 
where 𝑆𝑁𝑜𝑑𝑒 is the status value of node, n is the sensor count of the node, 𝑤𝑖 is the 
weight of sensor and 𝑁𝑋,𝑖 is the normalized value of the sensor. Additionally, we 
calculate optimal range for 𝑆𝑁𝑜𝑑𝑒 using range values for each sensor.  
As an example, raw expected values and normalized expected values for node 4 is 
given below Tab. 4: 
 

Sensor EVmin EVmax 

Standard 

Normalization 

Power 

Transform 

Normalization 

EVmin EVmax EVmin EVmax 

Humidity 30% 40% -0.3108  -0.1506 -2.5948  -1.1307 
Temperature 20° 25° -0.1560 0.1407 -1.3386  1.1952 

Tab. 4.  Optimal Values for Sensors of Node 4. 
 
After applying scale formula (𝑆𝑁𝑜𝑑𝑒), we determine optimal levels for Node 4. Results 
of our experiments are given in Tab. 5 and depicted in Fig. 6. 
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Parameter Value 

Total Number of Observations 2539569 
 Standard 

Normalization 

Power Transform 

Normalization 

Node Status Lower Threshold -0.2953 -2.4692 
Node Status Upper Threshold -0.1215 -0.8981 
Number of Observations Below Lower 
Threshold 

9453 (0.37%) 10082 (0.40%) 

Number of Observations Above Upper 
Threshold 

2442388 (96.17 %) 2441884 (96.15 %) 

Total Percentage of Unexpected 
Condition Duration 

96.55 % 96.55 % 

Tab. 5. Results of Node 4 Environmental Status. 
 

  
Fig. 6.  Overall environmental status of Node4. 
 
According to the results, we could say that environmental status packaging section of 
the production line remains above expected conditions during the observation period. 
This situation could affect final product quality. Moreover, results of two normalization 
approaches produces nearly same results. However, more sensors need to be measured 
to select best approach for environmental scale. 
The statistical prediction systems allow the company’s production line units can able 

to make machine to human and machine to machine communication.  Also, the 
substantive information is presented in a visual form to the company’s authorities as 

monitoring. This study worked on that approach with using digitalization components 
and also high quality food products with minimum resources and waste. 
 
3. Conclusion 
 
 Minimizing resource requirements and waste is a major goal of food production 
to meet increasing demand. However, final product quality is affected by several 
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environmental factors of the production line. In this study, we develop a new 
environmental monitorization approach to assess environmental status of a food 
production facility. Moreover, our approach could also be used to take necessary 
precautions for ensuring final product quality. For this purpose, today’s technologies 

such as WSN’s, IIoT and statistical failure prediction models were implemented to a 
real confectionery factory as digitalization. The WSN based 4 intelligent nodes had 
been placed on the critical locations of the production line. A coordinator node had also 
been placed to collect the data from the nodes and send them to cloud. The data was 
gathered in a cloud-based data store with the aim of archiving and processing. This 
processing was a type of analyzes which uses statistical methodologies to assess current 
and future environmental status of nodes. At the end of analyze, information was 
generated for monitoring the environmental conditions as well as providing data for 
M2M communication.  
 We proposed a new statistical environmental scale for combining multiple 
sensor data in one value to overcome difficulty of making decisions based on multiple 
information. Results of our scale were verified by factory experts. Our scale is also 
implemented by using R Statistical Software to ensure cloud compatibility. Then, 
overall node status scale results are also obtained using our implementation. Obtained 
scale and limits are presented to experts via web-based monitoring system which is 
also developed in the context of this work. With this approach, we have managed to 
digitalize the production process for the environmental condition and put apply it in a 
confectionery factory. At the end, real life data, prediction data and overall node status 
information have been provided to the use of decision makers as a business intelligence 
system. The system can be advised for facilities that has similar setup and production 
facilities. 
 As a result, we have developed assistant technologies to ensure suitability of 
production environment for final product quality. In future, performance of our 
approach will be evaluated on whole production line using different statistical models 
to choose best models for each part of the production line. 
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