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OPTIMAL DESIGN AND ANALYSIS OF 

VEHICLE SUSPENSION SYSTEM  
 

LIKAJ, R.; SHALA, A.; BRUQI, M. & BAJRAMI, XH. 
 

Abstract:  The chapter deals with the optimal design and analysis of quarter car 
vehicle suspension system. For optimal designs are used the optimal parameters 
which have been derived by comparison of two optimisation algorithms: Sequential 
Quadratic Program (SQP) and Genetic Algorithms (GA's), for a five chosen design 
parameters. The goal function is chosen to provide the possibility to emphasize three 

main objectives of vehicle suspensions; ride comfort, suspension travel and road 
holding. Fuzzy Logic Control (FLC) is considered to control active suspension for the 
optimal parameters derived by GA's, and the rule base can be tuned to improve each 
of the above objectives, while the main focus is to minimise the vertical vehicle body 
acceleration. It also deals with parametric analysis, state space modelling, Laplace 
Transform, Transfer Function, Stability, Controllability, Observability and many 
other important attributes to analyse quarter car vehicle model.  
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1. Introduction  

 
Nowadays the focus of vehicle suspension design has switched from pure 

numerical analysis to the application of different algorithms which are designed 
based on optimization methods. The development of optimizing methods is 
connected with the development of an automatic control of systems, which is the case 
in our study. 

Algorithms designed based on optimizing methods enables us to fasten the 
search process of finding optimal solution expressed by an objective function under 
the fulfillment of constraint conditions, which evidently has a great influence on the 
development of the whole group of modern control methods that for the calculation 
of the control effect utilize a mathematical model of the process determined based on 
the measured process data (MPC methods and algorithms). At present, a great 
success has been achieved by agent and colonic control methods as well as methods 
and genetic algorithms used in the system of off-line techniques applied to the 
searching for a global extreme of a goal function. The applications of the mentioned 
methods and their algorithms to nonlinear processes modeling and control, systems, 
significantly contribute to the improvement of approximation properties of modeling 
processes as well as to the improvement of a control quality of selected types of a 
control (Jadlovska, et al., 2011). 

Genetic algorithms (GAs) have been used in various applications such as 
function optimization, system identification and control systems. GAs is general-
purpose stochastic optimization methods for solving search problems to seek a global 
optimum. However, GAs is characterized by a large number of function evaluations 
(Likaj, et al., 2009).  

On the other hand, traditional methods, such as sequential quadratic 
programming (SQP), are well known to exploit all local information in an efficient 
way, provided that certain conditions are met and the function to be minimized is 
'well-conditioned' in the neighbourhood of a unique optimum. These methods require 
adequate local information to be known (such as the gradient and Hessian matrix). If 
the basic requirements are not satisfied, the reliability of the SQP method is greatly 
jeopardized. 

The aim of this study is to find optimal design parameters, for quarter car model, 
by minimising a nonlinear objective function subjected to a set of constraints with 
two different optimisation algorithms; SQP and GA in order to improve ride quality. 
By means of the ride quality analysis in the frequency domain, the vertical vehicle 
body acceleration (VBA), suspension working space (SWS) and dynamic tire load 
(DTL) can be obtained (Likaj, et al., 2009).  

   In this design optimization, the main objective is to minimize the VBA 
acceleration. In the meantime, the SWS and DTL are constrained. If the SWS is too 
small, the sprung mass will strike the un-sprung mass and this may lead to damage of 
the vehicle. If the DTL is greater than the static tire load, the vehicle's tires will 
bounce off the road (Likaj, et al., 2002, 2003) and this will result in unstable modes 
of vehicle motion. Therefore, we aimed to present the development of a method for 
obtaining poles, eigenvectors, natural frequencies and mode shapes, in order to 
perform a vibration analysis for a quarter car model by using three different 
approaches (Likaj, et al., 2003, 2004, 2005) and comparison of the natural 
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frequencies which have been obtained for the optimised model with the natural 
frequencies defined by the laws of the vibration theory. The parametric analysis gave 
information on how the natural frequency is affected when one of the parameters is 
perturbed. Parametric studies of dynamical systems are an important task in all major 
engineering design. This is especially true in the design of control systems. It is 
important to know when one parameter is changed, how that affects the system; if the 
system becomes unstable, do the natural frequencies change, etc. In addition we 
presented a task of state space modelling, Laplace Transformation, Transfer Function, 
Stability, Controllability, Observability as one of most important attributes to analyse 
quarter car vehicle model.  

Another aim was to develop a Fuzzy Logic Controller (FLC) for a quarter car 
model with optimised parameters, with a rule base (Cai& Konik, 1993, Likaj, et al., 
2005), which can be tuned to improve each of three objectives; ride comfort, 
suspension working travel and handling.   

In addition, in this study we have applied in integrative way software programs 
MATLAB and SIMULINK for optimisation, analysis, design and control of a quarter 
car model. 

 
2. Dynamical model of quarter car vehicle model 

 
The model of the quarter-car active suspension system used in this paper with 

two degree of freedom is shown in Fig. 1. The model represents a single wheel of a 
car in which the wheel is connected to the quarter portion of the car body through a 
hydro pneumatic suspension.  

 
 

 
 

Fig. 1. Quarter car suspension model of 2 DOF 

 
The dynamics of quarter car model in Fig. 1 are described by:  
 

 

1 1

2 1 2

( ) ( )

( ) ( ) ( )

k a k p s p k

p a k p s k p p r

m z f k z z c z z

m z f k z z c z z k z z

    

       
   (1) 

 
The model parameters and their respective units are summarized in Tab. 1. 
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Symbol Description Value 

1
m

 
Body mass 200 kg 

2
m

 
Wheel mass 33 kg 

sc
 

Damping ratio 1600 Ns/m 

1k  Spring constant 9000 N/m 

2k
 

Spring constant 200000 N/m 

Tab. 1. Quarter car vehicle model parameters 

 

Equations (1) can be represented in matrix form as: 
 

 afzKzCzM     (2) 
 

where M , C , and K represent the mass, damping, and stiffness matrices described 
by: 

 

 
 pk mmdiagonalM  ,

  (3) 
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Standard second order matrix form for the passive quarter car suspension system 

is shown in the following: 
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 (6) 
 
For free vibration, the general form leads to: 
 

 0 zBzA   (7) 
 
The response of this system takes the form: 
 

 
tevtz  )(  (8)  

where v is a constant vector.  
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The model represents a single wheel of a car in which the wheel is connected to 
the quarter portion of the car body through a hydropneumatic suspension.  

Substituting (8) in (7) leads to eigenvalue problem; 
 

   0 vBA   (9) 
 

Vector v is called the eigenvector and  represents eigenvalues.  

 

3. Natural frequencies and mode shapes simulation in Matlab 

 

Parametric studies of dynamical systems are an important task in all major 
engineering design. This is especially true in the design of control systems, when the 
focus is for low sensitivity to parameter variations (Likaj et al. 2005). It is important 
to know when one parameter is changed, how that affects the system; if the system 
becomes unstable, do the natural frequencies change, etc. 

Since we have obtained matrices M , C , and K, we can calculate natural 
frequencies and mode shapes in MATLAB. 

 
m1=200; m2=33; cs=1600; k1=9000; k2=200000; 
m=[m1 0;0 m2]; 
k=[k1 -k1;-k1 k1+k2]; 
[u,lamda]=eig(k,m); 
[u, lamda]=eig(k, m); 
fprintf('\n') 
disp('Natural Frequencies are:') 
% Print Natural Frequencies 
w=sqrt(lamda) 
fprintf('\n') 
% Print the Mode Shape 
disp('Mode shapes are:') 
fprintf('\n') 
disp('u=') 
fprintf('\n') 
disp(u) 
Natural Frequencies are: 
w = 
  6.5612         0 
         0   79.5945 
 
Mode shapes are: 
u= 
   -0.0707   -0.0012 
   -0.0031    0.1741 

Through simulation are obtained the values from V1 to V4 of a complex 
conjugate pairs of vectors using MATLAB with three different programming 
approaches. The simulation results are shown in Tab. 2. 
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First approach: 
a=[m1 cs k1]; 
b=[m2 cs k1+k2]; 
C=conv(a,b) 
d=[-cs -k1]; 
e=conv(d,d) 
f=C-[0 0 e] 
r=roots(f) 
C =1.0e+09 *[0.0000    0.0004    0.0447    0.3488    1.8810] 
e =[2560000    28800000    81000000] 
f =1.0e+09 *[0.0000    0.0004    0.0421    0.3200    1.8000] 
% poles of the system 
r = 
 -24.3582 +73.2172i 
 -24.3582 -73.2172i 
  -3.8842 + 5.5424i 
  -3.8842 - 5.5424i 
 
Second approach,  
t=[0:0.01:3]'; 
A=[0 0 1 0;0 0 0 1;-k1/m1 k1/m1 -cs/m1 cs/m1;k1/m2 -(k1+k2)/m2 cs/m2 -cs/m2]; 
B=[0;0;1/m1;-1/m2]; 
C=[1 0 0 0;0 1 0 0]; 
D=[0;0]; 
[num, den]=ss2tf(A, B, C, D); 
sys=ss([A],[B],[C],[D]); 
[r,p,k]=residue(num,den) 
r = 
  -7.1146 -15.0873i 
  -7.1146 +15.0873i 
   0.0009 + 0.0011i 
   0.0009 - 0.0011i 
p = 
 -24.3582 +73.2172i 
 -24.3582 -73.2172i 
  -3.8842 + 5.5424i 
  -3.8842 - 5.5424i 
k = 
0.0050   -0.3127 
Third approach: Frequency response and poles of the system 
M=[m1 0;0 m2]; 
K=[k1 -k1;-k1 k1+k2]; 
C=[cs -cs;-cscs]; 
 
% determination of frequency response and phase  
A=[zeros(2,2) eye(2);-K zeros(2,2)]; 
B=[eye(2) zeros(2,2);C M]; 
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[v,s]=eig(A,B) 
figure(1) 
plot(s,'.') 
v1=v(:,1); 
v2=v(:,3); 
v3=v(:,2); 
v4=v(:,4); 
grid on; 
v =-0.0011 + 0.0008i  -0.0011 - 0.0008i  -0.0991 - 0.0395i  -0.0991 + 0.0395i 
  -0.0042 - 0.0120i  -0.0042 + 0.0120i   0.0002 - 0.0049i   0.0002 + 0.0049i 
  -0.0317 - 0.0984i  -0.0317 + 0.0984i   0.6039 - 0.3961i   0.6039 + 0.3961i 
   0.9834 - 0.0166i   0.9834 + 0.0166i   0.0264 + 0.0200i   0.0264 - 0.0200i 
s = 
 -24.3582 +73.2172i        0                  0                  0           
0           -24.3582 -73.2172i        0                  0           
        0                  0            -3.8842 + 5.5424i        0           
        0                  0                  0            -3.8842 - 5.5424i 

 

Equation (9) is the governing equation and computer simulations will be used 

for further results.  
As we can see for all cases have been obtained similar results. The results are 

shown in Tab. 2 and Fig. 2/ Fig.3/Fig.4. 

 

Poles Value 

s11 -24.3582 +73.2172i 

s22 -24.3582 -73.2172i         

s33 -3.8842 + 5.5424i         

s44 -3.8842 - 5.5424i 

Tab. 2. Poles of the system 

 

 

         
 

Fig. 2. Poles of the system                            Fig. 3. First mode shape 
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Fig. 4. Magnitude for forced vibrations 
 
 
The result above indicates that the first and second damped natural frequencies 

are:  

 
2 2

1 1 11 6.5612 1 0.592 5.28792d n      
 [rad/s] 

 
2 2

2 2 21 79.5945 1 0.306d n       [rad/s]  (10) 

 
The negative sign in front of the real part of the complex roots indicates the 

decaying nature of the oscillation: 
 

 1 1 3.8842n       [rad/s] 

 2 2 24.3582n      [rad/s]   (11) 

 
From the equations (10) and (11), the natural frequencies are: 
 

 
1

3.8842
6.5612

0.592
n


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  [rad/s]   and  

2

24.3582
79.602

0.306
n


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  [rad/s] (12) 
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While natural frequencies are: 
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First and second natural frequencies calculated by general principles of theory of 

vibrations are given in the following: 
 

 

1
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2
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1

1 1

2

2 2

1600
0.5963

2 2 9000 200

1600
0.3113996

2 2 200000 33

s

s

c

k m

c

k m





  
   

  
   

             

(16) 

 

1
1

2
2

6.708
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 
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(17) 

  
From the results of the natural frequencies obtained in both ways it can be 

concluded that the values are almost the same. 
 

4. Stability of the model by Lyapunov theorem in Matlab 
 
The Lapunov criterion will be used to check whether or not the given system is 

stable. Starting point for stability analysis is state-space form of system (Jadlovska, 
A. et al., 2013, Likaj, R. 2003). Matrix A must be definite, x is the state vector 
containing n state variables. The quadratic form of Lyapunov function is:  

𝑉(𝑥) = 𝑥𝑇(𝑡) ∙ 𝑄 ∙ 𝑥(𝑡)                                                     18 

where Q must be a positive definite symmetric matrix nn. General form of 
Lyapunov matrix equation is: 

𝐴 ∙ 𝑄 + 𝑄 ∙ 𝐴𝑇 = −𝐶                                                    (19) 

Where  C is a positive definite symmetric matrix. Usually, matrix Q is taken 
Q=I. 

From MATLAB, for closed loop is: 
 

>>m1=200; m2=33; cs=1600; k1=9000; k2=200000;  
A=[0 0 1 0;0 0 0 1;-k1/m1 k1/m1 -cs/m1 cs/m1;    
k1/m2 -(k1+k2)/m2 cs/m2 -cs/m2]; 
B=[0;0;1/m1;-1/m2]; 
Q=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; 
X=lyap(A,Q); 
A*Q+Q*transpose(A); 

K=[0.01 1 0.01 0.1]; 
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eig(A-B*K) 
 
 
 
 
 
 
 
 
 
Since all real roots of conjugate pairs are negative, and C is positive the model of the 
system is asymptotically stable. 
 
5. Transfer function 

 
The transfer function of a linear time invariant system or a section of the system 

represents the ratio of the Laplace transform of the output to the Laplace transform of 
the input. The Laplace transforms are obtained directly from the differential 
equations describing the system. The transfer function thus contains basic 
information concerning the essential characteristics of a system without any regard to 
initial conditions or excitation. 

For the simplicity in the making equations, let’s assume: 
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 

1 1 2 2
4

2 11 2
4 1 2 3 4

respectively:

a s s
k p k p p r

p p p p p p p

a s s
r

p p p p p p

f c ck k k k
x z z z z z z

m m m m m m m

k kf c ck k
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m m m m m m

       


      

 (22) 
 
Transfer function written in Matlab: 
 

m1=200; m2=33; cs=1600; k1=9000; k2=200000; t=[0:0.01:3]'; 

C  = 

   1.0e+03 * 

         0         0           -0.0440    0.2727 

         0         0            0.0450   -6.3323 

   -0.0440    0.0450   -0.0160    0.0565 

    0.2727   -6.3323    0.0565   -0.0970 

ans = 

   7.0942e+10 
 

ans = 
-24.3567 +73.2176i  
 -24.3567 -73.2176i 
  -3.8842 + 5.5424i 
  -3.8842 - 5.5424i 
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A=[0 0 1 0;0 0 0 1;-k1/m1 k1/m1 -cs/m1 cs/m1;k1/m2 -(k1+k2)/m2 cs/m2 -cs/m2]; 
B=[0;0;1/m1;-1/m2]; 
C=[1 0 0 0;0 1 0 0]; 
D=[0;0]; 
[num, den]=ss2tf(A, B, C, D); 
sys=ss([A],[B],[C],[D]); 
tf(sys) 
ans = 
From input to output... 
                 0.005 s^2 + 7.821e-16 s + 30.3 
   1:  -------------------------------------------------- 
s^4 + 56.48 s^3 + 6378 s^2 + 4.848e04 s + 2.727e05 
 
             -0.0303 s^2 - 3.553e-17 s + 1.699e-16 
   2:  -------------------------------------------------- 
s^4 + 56.48 s^3 + 6378 s^2 + 4.848e04 s + 2.727e05 
 

6. Laplace transform 

 

The Laplace transform technique provides a useful and simple method to 

evaluate the performance of a control system. 

This integral transform is used to simplify the solution of linear differential 

equations by converting the differential equation into an algebraic equation. 

Now, taking Laplace transform for homogenous part of equations of motion 

given above, we will have. 

 

 

         

             

2
1 1 1 2 1 1 2 1

2
2 2 2 2 2 1 2 1 1 2 1

0

0

s s

r s s

m s x s k x s k x s c sx s c sx s

m s x s k x s k x s k x s k x s c sx s c sx s

    

      
 (23) 

 

In matrix form: 
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Finally the transfer function of quarter car suspension system is: 

  122
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12112
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(25) 

 

Transfer function in Matlab 

m1=200; m2=33; cs=1600; k1=9000; k2=200000; 
syms t s 
F=tf([k2*k1*cs  k2*k1],[m2*m1 (m1+m2)*cs k2*m1+(m2+m1)*k1 k2*cs k2*k1]); 
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>> F 
F = 
                    2.88e12 s + 1.8e09 
  ------------------------------------------------------- 
  6600 s^4 + 372800 s^3 + 4.21e07 s^2 + 3.2e08 s + 1.8e09  
Continuous-time transfer function. 
num= [2.88e12 1.8e09]; 
den=[6600 372800 4.21e07 3.2e08 1.8e09]; 
G=tf(num,den) 
[A,B,C,D]=ssdata(G) 
G = 
                     2.88e12 s + 1.8e09 
  ------------------------------------------------------- 
  6600 s^4 + 372800 s^3 + 4.21e07 s^2 + 3.2e08 s + 1.8e09 
 
Continuous-time transfer function. 
A =- 
56.4848  -99.6686  -23.6742   -8.3230 
   64.0000         0                   0              0 
         0         32.0000             0              0 
         0                0           16.0000         0 
B = 
512 
     0 
     0 
     0 
C =0         0  416.1488    0.0163 
D =0 
 
or 
 
>>m1=200;m2=33;cs=1600;k1=9000;k2=200000; 
syms t s 
F=[k2*(k1+cs*s)]/[(m2*m1*s^4+(m1+m2)*cs*s^3+(k2*m1+(m2+m1)*k1))*s^2+k
2*cs*s+k2*k1]; 
laplace (F) 
ans = 
1800000000*laplace(1/(6600*s^6 + 372800*s^5 + 42097000*s^2 + 320000000*s + 
1800000000), s, z) + 320000000*laplace(s/(6600*s^6 + 372800*s^5 + 
42097000*s^2 + 320000000*s + 1800000000), s, z) 

 

7. Full controllability  

 

If any modes of the open-loop system are unstable, they can be stabilized with a 

feedback using linear quadratic control. A necessary condition for solving the 

controller problem is that the system is controllable. This means that all the modes 
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can be excited or controlled by the input u. In terms of the state space matrices, the 

condition of controllability can be shown by constructing the controllability matrix 

Qc defined by:  

 

𝑄𝑐 = [𝐵, 𝐴𝐵,… , 𝐴𝑚−1𝐵]                                              (26)  

 

Controllability is ensured when the rank of QC equals m, where m is the order of the 

system.  

 

8. State controllability 

 

A system is said to be “(state) controllable” if for any t0 and any initial state 

x(t0)= x0 and any final state xf, there exists a finite time t1> t0and control u(t), such 

that x(t1)= xf. 
 

A LTI system with the state equation BuAxx   is controllable if the 

controllability matrix  BABAABBQc m 12 ,,,  , ... has rank m. 

 
Controllability 
>> Qc=ctrb(A,B) 
rank(Qc) 
Qc = 
   1.0e+08 * 
    0.0000   -0.0003   -0.0163    2.5186 
         0    0.0003   -0.0185   -1.0447 
         0         0    0.0105   -0.5923 
         0         0         0    0.1678 
ans = 4 
 

Since rank of Qc is 4 equals with size of matrix A, system is controllable. 

 

9. State observability 

 

A system is said to be “(state) observable” if for any t0 and any initial state                

x(t0) = x0  there exists a finite time t1> t0 such that knowledge of u(t) and y(t) for                  

t0 t t1 suffices to determine x0 

A LTI system with the state space model 

 

 BuAxx    (27) 

 Cxy   

is observable only if observability matrix 
T

2 1
0 , , ,  ... , AnQ C CA CA C  

 
has rank n. 

Functions in MATLAB 
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Observability 

Q0=obsv(A,C) 

rank(Q0) 

Q0 = 

   1.0e+07 * 

         0         0    0.0000    0.0000 

         0    0.0013    0.0000         0 

    0.0852    0.0000         0         0 

   -4.8140   -8.4945   -2.0177   -0.7093 

ans = 4 

 

Since rank of Qo is 4 equals with size of matrix A, system is observable. 

 

10. Stochastic road modeling and PSD response 

 

Road irregularity or unevenness represents the main disturbing source for either 

the rider or vehicle structure itself. The road profile elevation is usually expressed in 

terms of the power spectral density (PSD). The PSD of the road profile elevation is 

expressed as: 

 0 0( ) ( )( / ) w
q qG n G n n n 

  (28) 

 

For the purposes of design optimization, according to James' principle, the root 

mean square (RMS) of the sprung mass acceleration 2z  can be expressed as: 

 

 

1/2
2

2 1 2 1
3/2 1/2 2
1 1 1

( )k

2 2

s
z

s

k c m m
RV

m k c m
 

   
   

    (29) 

 

The RMS of the suspension working space df  is: 

 

 

1/2
1/2

1 2 1 1

1

( )( k )

2
fd

s

m m m
RV

m c
 

   
   

    (30) 

 

The RMS of the relative dynamic tire load can be calculated as: 

 
1/2

2 2
12 2 1 2 1 2 1 2

/ 2 2
1 1 2 1 21 2 1

( )k

( ) 22 ( ) 2

s
Fd G

ss s

c kk m m m k k m
RV

c m m m m mc m m m c
 

   
     

         (31) 
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11. Design optimisation 

 

In this section, the sprung mass vertical acceleration is minimized, while the 

design constraints on the suspension working space and dynamic tire load should be 

satisfied. To implement the design optimization, the two optimization algorithms, i.e, 

SQP and GA, will be applied, respectively. 

 

Optimization based on SQP algorithm and GA 

 

The SQP algorithm is a non-linear programming technique that is used for the 

purpose of minimizing a smooth non-linear function subjected to a set of constraints 

with upper and lower bounds. The objective function and the constraint functions are 

assumed to be at least twice continuously differentiable. This algorithm is a gradient-

based search method (Likaj, R. et al., 2009, Zhongzhe, Ch., et al., 2008). This 

algorithm is well-suited for constrained design optimizations. 

The reliability for finding the optimum decreases with the increase of number of 

design variables when using SQP method. In contrast, whether the number of design 

variables increase the GA can still reliably find the optimum. This can be explained 

by the fact that GA works on a population of variables in parallel, not on a unique 

point. GAs are global search methods that are based on the Darwin's principle of 

natural selection and genetic modification. The GA has higher reliability to find the 

global optimum with minimum number of computational operations.  

The RMS of the acceleration of a sprung mass kz
 is frequently used to evaluate 

the riding quality of a vehicle. A rider's comfort improves as the acceleration 

decreases. Ride comfort is chosen to be the design criterion. The suspension working 

space and dynamic tire load fd are selected as the design constraints. The design 

variables are m1, m2, Kt, K and C, respectively.  

Thus, the design optimization problem can be described as: 

Minimise:  

 

1/2
2

2 1 2 1
1 2 2 1 3/2 1/2 2

1 1 1

( )k
( , ,k ,k ,c )

2 2

s
z sk

s

k c m m
m m R V

m k c m
 

   
   

    (32) 

 Subject to: 

/ 1 2 1 2

1 2 1 2
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 (33) 
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In this sub-section, the optimization results are derived for a vehicle travelling at 

the speed of 40 m/s on the road with an irregularity coefficient of power spectrum 

taking the value of 6.5x10-6 m3. 

 

 Original values SQP method GA 

Initial 

values 

 [10 10 10 10 10] [10 10 10 10 10] 

m1 [kg] 200 200.0 199.918612498565 

m2 [kg] 33 32.0 32.04226032330942 

k2 [N/m] 200000 200000.0 200305.81925474654 

k1 [N/m] 9000 9100.0 9099.82776078753 

cs [Ns/m] 1600 1580.0 1591.7473971815848 

1z


 
 1.2673254442031 1.26976709377 

  Optimum found: 52 

iterations  

Optimum found: 51 

generations  

Tab. 3. Optimal design variables based on the SQP and GA for minimizing the 

sprung mass vertical acceleration, vehicle speed 40 m/s 

 

12. Fuzzy logic controller 

 

Fuzzy Logic Control has accelerated in recent years in many areas, including 

feedback control. By using empirical rules according to the designers knowledge and 

experience, which are represented linguistically with the conditional statements and 

resulting assertion.   

 

       

Fig. 5. Fitness value GA                                Fig. 6. Fitness value SQP 
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A fuzzy rule base has a very significant effect on the control strategy in FLC, in 

other words it defines the strategy of the controller. To the active suspension system 

there are at least three main objectives, namely ride comfort, suspension travel and 

handling. The rule base can be tuned to improve each of the above objectives.  

The fuzzy logic controller used in the active suspension has three inputs: body 

acceleration bz , body velocity bz , body deflection velocity tb zz    and one output: 

desired actuator force af , shown in Fig. 8. 

 
* ( )

( )

D
fa

a
D

fa

f f df

f
f df










               (34) 

 
 

 
 

Fig. 7. Control scheme of quarter car model 

 

 
 
 
 
 
 
 
 

Fig. 8. Inputs and output of FLC 
 
The control system itself consists of three steps: fuzzification, fuzzy inference 

machine and deffuzification. During the fuzzification process the real numbers (crisp) 
inputs will be converted into fuzzy values, where after fuzzy interference machine 
processes the input data and computes in cope with the rule base and database. The 
obtained outputs (fuzzy values) are converted into real numbers by the 
defuzzification step. Membership functions are chosen for the inputs and the output   
variables with the following variables: NV-negative very big, NB-negative big, NM-
negative medium, NS-negative small, N-negative, ZE-zero, P-positive, PS-positive 
small, PM-positive medium, PB-positive big, PV-positive very big. 

The fuzzy rule based system modelled by designer’s knowledge and experience 
is shown in Fig. 9. (Likaj, R. et al., 2002, Cai & Konik, 1993, Likaj, R., 2003). Rule 
Editor in Matlab is shown in Fig. 10.   

 

 

pk zz    

pz  

kz  

af  

 

 

 
FLC 
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Rules of the controller have the following general form: 
 

: ,

.

i b i b i b t i

a i

R IF z isA AND z isB AND z z isC

THEN f isD

    

 
               (35) 

Where: iA , iB , iC  and iD are labels of fuzzy sets representing the linguistic 

values of tb zz   , bz , bz  and af , which are characterised by their membership 

functions: 1 1b tz z    ; - 11  bz ; 44  bz ;  40004000  af . 

Results of simulation for the passive quarter car model are shown in Fig.13 
/Fig.14. The results of simulation for active quarter car model are shown in 
Fig.15/Fig.16, while the acceleration of unsprunged mass for passive quarter car 
model is shown in Fig. 17. Accelerations of the active quarter car model are shown in 
Fig. 18/Fig.19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Fuzzy rules 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Fig. 10. Rule Editor in Matlab 
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The output of the fuzzy controller D  is corresponding membership function. 

 
 

 
 

Fig. 11. FIS Editor in Matlab                             

 

 
 

 
 

Fig. 12. Surface Viewer in in Matlab 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Unsprung mass displacement for passive quarter car model 
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Fig. 14. Sprung mass displacement for passive quarter car model 

 

         
 

Fig. 15. Unsprung mass displacement 

active quarter car model 

Fig. 16. Sprung mass displacement for        

active quarter car model 

 

 

      
 

Fig. 17. Acceleration of unsprunged mass 

for passive quarter car model 

Fig. 18. Acceleration of unsprunged             

mass for active quarter car model 
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Fig. 19. Acceleration of sprunged mass for active quarter car model 

 

13. Conclusions 

 

A comparative study of two optimization algorithms (genetic algorithms, GAs 

and sequential quadratic programming, SQP), has been conducted through 

minimizing the vertical sprung mass acceleration subjected to a suspension working 

space and dynamic tire load.  

By optimizing the design parameters compared with the original design, the 

sprung mass (body) acceleration decreases. The suspension working space and the 

dynamic tire load satisfy the specified design constraints. Based on the simulation 

results the optimum found by GAs at 19 generations, while by using the SQP the 

optimum is found after 51 iterations. As shown from the numerical simulation results 

in Fig. 4, the max amplitude of body displacement using optimized design variables 

is reduced for 9%, while maximal amplitude of body acceleration is reduced around 

22%. 

Numerical experiments reveal the fact that to improve vehicle ride quality and 

satisfy the specified suspension working space and relative dynamic tire load, 

different vehicle speed and road irregularity have different requirements on the 

design variables, in particular, the un-sprung mass.  

From the parametric analysis it can be concluded that mass is a very sensitive 

parameter, and must be handled with special attention. 

From the results of the natural frequencies obtained in both ways it can be 

concluded that the values are almost the same. 

Active suspension systems using FL Controllers can reduce vertical 

accelerations, as shown in Fig. 19. This means, that the main properties; ride comfort 

and road holding were achieved for the quarter car model. For the design of an FLC, 
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an accurate vehicle model is not needed, but it’s a very difficult task to express the 

knowledge and experience in terms of fuzzy logic. 

Form the results of this study it became evident to us that the combination of 

MATLAB and SIMULINK represent a powerful tool on research of parametric 

analysis, optimisation and optimal control of vehicle suspension system. 

Since the quarter car model is one the bests and represents the simplest model 

for the analysis of ride comfort, the same approach will be applied in our future 

research to analyse half car and full car vehicle suspension system 
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