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Abstract 

 
Dynamic behaviour comparison of three different mathematical descriptions complexity for first 3 joints of 6 degrees of 
freedom robotic structure is presented in this article. Firstly, 3D CAD model is designed in SolidWorks, which is used as 
the basis for a physical and mathematical model. The CAD model is exported directly from SolidWorks to SimMechanics 
as a physical model which is considered as the most accurate replacement for a real model in this work. The first type of 
a mathematical model is the most precise but also the most complex; it is based on SolidWorks inertia matrices and matrix 
form of Lagrange's motion equations of the second kind. The second type of a mathematical model is created by each part 
replacement with a suitable simplified shape; classical integration approach with Lagrange's motion equations of the 
second kind is used. The third type of a mathematical model is based on the same approach as the second type, but all the 
objects are replaced by mass points. At the end, all the results of dynamic behaviour are compared with the physical 
model, for utilization in controller design. 

 

Keywords: Model-Based-Design; Mathematical model; Simulation; Motion equation; SimMechanics 

 

 

1. Introduction 

 

 Nowadays, a wide range of different support software tools are available; it provides many possibilities and ways to 

determine mathematical or physical model [4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20]. Accurate detection of a 

mathematical model is complicated in the case of a complex mechanical structure with many parts, and it should not be 

used for simulation purposes and controller determination at the same time. The chosen way is to split the problem 

between 2 models is: the most accurate model for a simulation as a real (physics) model substitution - physical model [4, 

9, 14, 18] and appropriately simplified model purely for a controller determination - mathematical model [7, 19, 20]. 

 For a mathematical and physical model, a CAD model is very helpful. SolidWorks is used for a CAD model design 

[12, 14, 15, 16, 17, 18]. Only the shape and the material properties of an object are needed to know for a full dynamic 

description; these parameters are included in the CAD model. This means that the CAD model should always be the first 

step in an accurate dynamic simulation of any system. 
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 The physical model is exported directly from SolidWorks to the SimMechanics Second Generation [14, 15]. It includes 

all dimensions, joins and material properties of the CAD model. It is the most accurate model that includes all important 

shapes (inertia matrices) and mass details for dynamic simulation purposes [16, 17]. 

 The first type of mathematical model is the most accurate but also the most complex. It is based on inertia matrices 

[4, 11], transformation matrices [1, 3, 14, 17, 20], centres of mass position vectors [2, 16] and model masses. All of these 

parameters are taken from the SolidWorks CAD model. In this case, the matrix form of Lagrange's motion equations of 

the second kind is used [2, 16]. 

 The second type of mathematical model uses shape simplification. Every link is replaced by a mass rod, every actuator 

is superseded by a mass point and significant cylindrical part is replaced by a mass cylindrical plate. The whole assembly 

is divided into many essential parts whose contribution of energy sumis the energy of the entire assembly. 

 The third type of mathematical model is similar to the second type, but all stationary objects are replaced by mass 

points. This mathematical model is the simplest, but its accuracy is the lowest. 

 In the results of this work, the differences between the above mentioned mathematical descriptions during dynamic 

simulation should be visible. These results should help to understand when it is better to use a more precise mathematical 

model and when the simplest model is sufficient as a basis for design control law. 

 

2. CAD model 

 

 The SolidWorks CAD model consists of 9 parts as shown in Fig.1. Each part has an associated local coordinate system, 

the material and joins each other by structural bonds to the final fully bonded assembly [12, 14, 15, 16]. 

 

 
 

Fig. 1. The CAD model of the analysed system 

 

 The CAD model has 6 degrees of freedom (DOF) [3, 18] generally, but the first 3 joints have the most interesting 

dynamic behaviour and will be studied in this paper. Therefore, the last 3 DOF (parts 7, 8 and 9 in Fig. 1.) will be fixedly 

connected to each other and with the link 6. 

 

3. Physical model 

 

 The SolidWorks model is exported directly into the SimMechanics Second Generation diagram along with all the 

linkages, dimensions and material properties [14, 15]. 

 

 
 

Fig. 2. SimMechanics Second Generation physical model 
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 A physical model is considered to be the most accurate substitute for a real physics system in case of precise CAD 

model which is the SimMechanics model based on. All mathematical models dynamic behaviours are compared with the 

physical model to see how accurate the mathematical models are. 

 

4. Mathematical models 

 
 

Fig. 3. Graphic preview of mathematical model simplifications 

 

Three different CAD model simplifications are shown in Fig. 3. and their mathematical descriptions are derived below. 

 

4.1 Transformation of coordinate systems 

 

The transformation matrices are used to determine the position and orientation of a local coordinate system firmly 

connected with the component in the overall global coordinate system [8, 15]. They are an integral part of any complex 

mathematical model determination. 

 

 
 

Fig. 4. Simplified models with the selected coordinate system placement 
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The centres of mass position vectors for the above mentioned local coordinate systems are different for each mathematical 

model simplification. In general, they are listed as: 

 

�> �@ �> �@ �> �@T3332316
6T

2322214
4T

1312112
2 1rrrrr1rrrrr;1rrrrr � � � � � � 321

 (4)  

 

For the next steps, the real model parameters are: 

 

2
321 sm 9,81g kg 4,565 mkg; 1,008 mkg; 2,938 m

m 0,3l m; 0,031d m; 0,065c m; 0,065b m; 0,171a 
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(5)  

 

4.2 The first mathematical model - no simplification 

 

 The first model (Fig. 4. part 1) has a different approach to the motion equation derivation than the other two models. 

It uses the matrix form of Lagrange's motion equations of the second kind. This mathematical description is the most 

accurate of the three listed models because of inertia matrix using with a centre of mass position vectors from the CAD 

model, which are with transformation matrices all necessary parameters to need to know. 

 

Motion equations matrix form has the general form [2, 16]: 
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As could be seen, the only two other variables need to be known. These parameters are found in the SolidWorks CAD 

model. 

 

The centres of mass position vectors are: 
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The pseudo-inertia matrices are: 
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(9)  

 

The specific solution for the system shown in equation (6) is: 
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4.3 The second mathematical model - shape simplification 

 

 The second model (Fig. 4. part 2) uses shape simplification as described in the introduction part. The Lagrange 

equations of the second kind were used to find the motion equations. In order to use Lagrange equations, it is necessary 

to define the kinetic and potential energy of the whole system. The transformation matrices and the centre of mass position 

vectors are used to determine the absolute position and velocity of each simplified part. This mathematical description is 

not as accurate as the previous model but should be sufficient even for simulation purposes because of the mass 

distribution cause - it is analyzed in results comparison. 

 Due to the motion equations derivation complexity (each part has similar but not the same approach to find kinetic 

and potential energy) will be described only one simplified part (Fig. 1. part 4) kinetic/potential energy determination and 

then the motion equations will be derived. 

 

The position vector in the global coordinate system: 
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The potential energy (gravitation is in the global axis Y direction, therefore the p12 position is used): 
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The kinetic and potential energy of the other six parts (Fig. 1.) is determined in a similar way like for the above-

mentioned part. The total kinetic and potential energy of the system is: 
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Equation (19) can be also rewritten into the motion equations matrix form shown in equation (6). For the parameters in 

equation (5) and the corresponding centres of mass position vectors, the motion equations for the second mathematical 

model are: 
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This mathematical description is not too complicated compared to the previous equations (10), (11) and (12). 

Nevertheless, there is one more solution with a simpler mathematical description determination. 

 

4.4 The third mathematical model - mass point simplification 

 

 The third model (Fig. 4. part 3) uses mass point simplification which quantity is equal to the DOF number. The 

Lagrange equations of the second kind were also used to the motion equations determination. There is the same approach 

as in the previous chapter 4.3, but all the fixed parts are replaced by the mass points located in their centre of mass. Their 

number is three because the model has three DOF. This mathematical description is not as accurate as previous two 

models and should not be used for the simulation purposes because all the mass is concentrated in the centre of mass of 

each fixed body parts only. This means the mass distribution has been disturbed. 

 

 However, this model is easiest to derive and should be the most appropriate for the design control law purposes 

because of its expected simplicity. The differences between dynamic behaviour will be determined in the next chapter. 

The third model's motion equations matrix form for the parameters in equation (5) and appropriate centres of mass position 

vectors are: 
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As could be seen, the simplest model with only three mass points does not mean simplest final motion equations. The 

second mathematical model is more accurate and not too complex, but its determination was hardest. 

 

- 0690 -



28TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION 

 

 
 

5. Comparison of results 

 

 The resulting motion equations are compared with the physical model torque outputs in Fig. 5. The SimMechanics 

physical model is considered to be the most accurate dynamic model here and therefore, any deviation indicates an 

inaccurate approximation. 

 
Fig. 5. The physical and the three different mathematical models comparison 

 

 As shown in Fig. 5., all the model's dynamic behaviour is very similar, only in the third DOF third mathematical 

model output is more obvious deflection. The motion, which the listed torques correspond to, was chosen as the most 

dynamic technological movement as could be required. For more detailed research, the Fig. 5. is enlarged in Fig. 6. 

 

 
Fig. 6. The physical and the three different mathematical models comparison - detailed view 
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