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Abstract 
 
Modern computing resources provide substantial processing power but require that the programmatic implementation of 
used numerical algorithms is fine-tuned to the target CPU architecture. The main performance gains could be obtained 
minimizing cache traffic and by efficient using of multiple levels of CPU parallel units. Monte Carlo estimation of LIBOR 
models is an example of challenging computational finance/computer programming problem. This paper compares the 
efficiency of multicore (Intel Core Haswell) and manycore platforms (Intel Xeon Phi Knight Corner and Intel Xeon Phi 
Knight Landing) for the calculation European LIBOR-based swaptions. Target optimized programmatic implementations 
of LIBOR calculation using the Intel Cilk Plus and OpenMP standards are presented and benchmarked. Results show that 
Intel Xeon Phi Knight Landing evaluate payoff European LIBOR-based swaptions faster, economically profitable and 
more energy efficient than the Intel Xeon Phi Knight Corner coprocessor and Intel Core Haswell.  
 
Keywords: Libor; Monte Carlo simulation; Intel Cilk Plus; OpenMP; Intel Knights Landing 
 
 
1. Introduction  
 

The London interbank offered rate, also called LIBOR [1] is one of the main instruments in the debt market and it is 
the basis for many derived interest rate instruments. Along with numerous analytical methods, "brute force" Monte Carlo 
approach could be used to simulate prices of LIBOR-based swaptions [1]. Numerous papers 
[2][3][4][5][6][7][8][9][10][11] confirm that the Monte Carlo prices of LIBOR-based swaptions could not be calculated in 
a reasonable time without high level of parallelization. Currently Intel processors are evolving from multicore (Intel Core) 
toward manycore (Intel Xeon Phi) architectures, offering massive parallelization capabilities even on single CPU. Although 
the declared theoretical peak power (GFLOPs) show significant performance gain for manycore processors, the economic 
performance-per-price and performance-per-watt are still questionable. The purpose of the present work is therefore to 
first efficiently tune parallelization of the LIBOR Monte Carlo calculation both on multicore and manycore CPUs, and 
then to compare both their execution times and main economic performance. 

There are many LIBOR test cases with different Monte Carlo settings [12][13][14]. In this paper we used algorithm 
[15] based on an original code by Paul Glasserman and Xiaoliang Zhao [12][16][18] with subsequent modifications by 
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Mike Giles [13][19]. The algorithm requires repeated simulations of chance that lend themselves well to parallel (thread) 
processing and vectorization on multicore and manycore Intel CPUs.  

For writing the parallelization code, we used alternatively Intel Cilk Plus and OpenMP frameworks and Intel 
vectorization C++ language extensions as available using the Intel Compiler v17.0. The used algorithm was optimized to 
the target CPU architecture regarding to differences in available instruction sets (AVX  2.0, IMCI, and AVX-512) between 
target architectures: Intel Xeon Haswell (HSW), Intel Xeon Knight Corner (KNC), and Intel Xeon Knight Landing (KNL) . 
We evaluated the economic profitability and the energy efficiency using computation time in representative benchmarks. 
On these benchmarks, we demonstrate best performance and also economic gains on the KNL. 

 
The paper is organized as follows. Section 2 describes used algorithm. Section 3 describes implementation details. 

Section 4 evaluates showing performance results on real benchmarks. Section 5 presents our conclusion and future work.  
 
2. Used algorithm 
 

Monte Carlo simulation is very usefully technique in capacity planning [17] and to compute the correct prices for 
financial options in computational finance especially for the calculation of LIBOR. In mathematical finance, we have two 
classic methods used to compute LIBOR in a Monte Carlo setting: the pathwise sensitivities and the Likelihood Ratio 
Method. In this section, we brief review of LIBOR market models based on a finite set of maturities, as developed by 
Jamshidian [18]. 

 
The forward LIBOR rate at time t for the accrual period [Ti; Ti+1], with t �”��Ti, is 
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It is at times notational convenient to extend the definition of �.�Ü beyond the ith tenor date; we do so by setting �.�E�:�P�; 
L
�.�E�:�6�E�; for �P <�6�E. At a tenor date �6�E, the price of any bond �$�J, with n > i, that has not yet matured is given by 
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more generally, at an arbitrary time���P <�6�J, we have 
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The time-t value C(t) and time-T value C(T) of a derivative security (that can be replicated by trading in the basic bonds) 
are related by the pricing rule 
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where {�à�����W���•�����`���L�V���W�K�H���I�L�O�W�U�D�W�L�R�Q���J�H�Q�H�U�D�W�H�G���E�\���W�K�H���%�U�R�Z�Q�L�D�Q���P�R�W�L�R�Q�� 
From (4) and the definition of �$�Û, it follows that its price at time 0 is 
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See [16] for more details. The algorithm then proceeds as follows: 
 

1. calculate Monte carlo paths, 
2. calculate path for swaption kernel, 
3. calculates the forward LIBOR rates over the time interval, 
4. calculates the estimated strike price for the swaption, 
5. discounts the forward LIBOR rate. 

Each option in alghoritm step could be parellized using multiple threads or vectorization. 
 
3. Implementation Details 

 
Intel compiler v17.0 offers support for different multithreading parallelization frameworks. We have used alternatively 

Intel Cilk Plus and OpenMP since they use very similar code extensions. Each of the parallel programming frameworks 
has their own internal implementation and it is expected different fit to problem we are solving. 
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3.1. Intel Cilk Plus 
 

Intel Cilk Plus [20] [21] is a powerful parallelization and vectorization framework that can effectively parallelize 
complex problems. In this framework, the programmer specifies the components of the application that can been run in 
parallel, and the runtime library takes care of assigning computing resources (cores) to the parallel tasks. This is done via 
�D�Q���L�Q�W�H�U�Q�D�O���V�F�K�H�G�X�O�L�Q�J���P�H�F�K�D�Q�L�V�P���E�D�V�H�G���R�Q���³�Z�R�U�N���V�W�H�D�O�L�Q�J�´���W�R���G�L�V�W�U�L�E�X�W�H���S�D�U�D�O�O�H�O���Z�R�U�N-�L�W�H�P�V���D�P�R�Q�J���³�Z�R�U�N�H�U�V�´�����:�R�U�N�H�U�V��
are a concept in Intel Cilk Plus similar to threads in other frameworks (for example, OpenMP). Because of the simplicity 
of the API and high degree of behind-the-scenes automation, Intel Cilk Plus can dramatically reduce the development 
workload and time while providing great performance. In the framework, we have only three keywords in Intel Cilk Plus: 
cilk_for, cilk_spawn and cilk_sync. Namely, in our study, we used cilk_for that enables programmers to parallelize C/C++ 
for loops.  

However, note that this ease of use of Intel Cilk Plus functionality does not release the programmer from following 
the necessary precautions that apply to all parallelized loops. Avoiding issues such as race conditions is still the 
�S�U�R�J�U�D�P�P�H�U�¶�V�� �U�H�V�S�R�Q�V�L�E�L�O�L�W�\����In this case, Intel Cilk Plus provides C++ templates referred to as reducers in order to 
eliminate race conditions in parallel programs with certain patterns (see, e.g., [22]) [23]. In fact, Intel Cilk Plus is the 
vectorization and multi-threading capabilities are separable, and often the vectorization capabilities are useful in 
conjunction OpenMP. In our study, Intel �&�L�O�N���3�O�X�V���K�D�V���S�D�U�W�L�F�X�O�D�U�O�\���O�R�Z���F�R�V�W���³�V�S�D�Z�Q�L�Q�J�´�����V�R���L�W�¶�V���D���S�D�U�W�L�F�X�O�D�U�O�\���J�R�R�G���I�L�W���I�R�U��
highly recursive code where the base cases cannot be forced to be large chunks. 
 

3.2. OpenMP 

 
The OpenMP programming model provides an API with set of compiler directives, function calls, and environment 

variables that instruct the compiler how and where to use parallelism in the application. The directive based approach 
makes it possible to write sequentially consistent codes for easier maintenance. The well-known advantage of OpenMP 
is its global view of application memory address space that allows relatively fast development of parallel applications. 
OpenMP is supported by almost all major compilers [24]. 

The OpenMP can be used effectively for the parallelization of the originally sequential code because this requires only 
minimal code changes, and thus minimizing the logical mistakes of the programmer. The programmer does not create 
threads directly within the application code, but just inserts OpenMP directives for the compiler, which generates the code 
for threads during the translation. The advantage of this approach is obvious; in most cases, it is sufficient just to insert 
directives to indicate which section of code will running parallel. The original code does not need to be changed. The 
functionality of the originally sequenced code is clearly visible and the parallelization code is separable. Obviously, this 
approach is especially useful when it is necessary to parallelize the existing code. 
 

In our study, we have used the following OpenMP directives valid for C/C++ programming languages: 
�x #pragma omp parallel { } �± defines a section of the parallel calculation, 
�x #pragma omp for schedule (dynamic) �± defines a parallel loop and each iteration will be assigned to threads 

dynamically. 
 

The pragmas control how the program works. By the C/C++ standards, even if the compiler does not support pragmas, 
the program will run correctly, however, without parallelism. Therefore an adding the OpenMP directives can be done 
very safely. [25] 
 

3.3. Vectorization 
 

Used CPUs have different instruction vectorization sets. The HSW CPUs provide 256-bit vector registers and 
AVX/AVX2 (Advanced Vector Extensions) instruction sets. KNC provides 512-bit vector registers and IMCI instruction 
sets. The KNL nodes provide 512-bit vector registers and new AVX -512 instruction set. Intel compiler C/C++ language 
extension for array notations simplifies the code vectorization since it translates array notation any of targeted CPUs / 
instruction sets. However to get the most performance out of these processors, users need to take in account of CPU 
differences when applying vectorization instructions in their code, where the vector register size is the most significant 
parameter. In order to enable the compiler to generate efficient code for the assembly step, we have added __restrict and 
const keywords to our computational kernels. 

This is rather straightforward to do as the computational kernels are implemented using simple data structures and 
abstractions are only build on top of that layer. We have used the vectorization report of the Intel performance profiling 
tool (Intel VTune Amplifier) to check that the compiler has indeed sufficient information to vectorize the time intensive 
portions of our algorithm. Note, however, that the code for the KNL is essentially identical to the optimized code for all 
platforms. 
 
In this article, all tests are run on the three machines with the following specifications: 
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1) Intel multicore Platform Xeon Haswell-E (HSW): 6-core Intel Core i7-5930K series processor based on the Intel 
Xeon Haswell-E architecture with two thread per core; Frequency: 3.5 GHz; DDR4: 32GB; L1d cache: 32 kB; L1i 
cache: 32 kB; L2 Cache: 256 kB; L3 Cache: 15360 kB 

2) Intel manycore Xeon Phi Knights Corner (KNC): a single 57-core Intel Xeon Phi coprocessor 3120A with four 
threads per core; Frequency: 1.1 GHz; GDDR5: 6 GB of RAM; L1d cache: 32 kB; L1i cache: 32 kB; L2 Cache: 
28.5 MB 

3) Intel manycore Xeon Phi Knights Landing (KNL): a single 68-core Intel(R) Xeon Phi(TM) CPU 7250 processor 
with four threads per core; Frequency: 1.4 GHz; DDR4: 96 GB of RAM with 16 GB MCDRAM memory at 1013.140 
MHz; L1d cache: 32 kB; L1i cache: 32 kB; L2 Cache: 34 MB 
 

�7�K�H�� �E�D�V�H�� �V�F�H�Q�D�U�L�R�� �Z�H�� �X�V�H�G�� �I�R�U�� �P�R�V�W�� �R�I�� �R�X�U�� �U�H�V�X�O�W�V�� �V�H�W�V�� �/� �K� ���������� �D�Q�G�� �1����� �������� �F�R�U�U�H�V�S�R�Q�G�L�Q�J�� �W�R�� �D�� �W�H�Q-year term 
structure of quarterly rates. There are 3 possible swaptions with 5 possible maturities (lengths) per swaption and possible 
strike prices for the 3 swaptions. Amount price varies over time typically determined as a function of time to maturity in 
this example; however, it remains constant 0.2 values and number of simulations that Monte Carlo runs is 96000. The 
application of Libor Rate Model (LRM) to estimating delta entails knowledge of the transition density of the underlying 
state variables. No such density is available in forward LIBOR models, so we use a Gaussian approximation using Intel 
Math Kernel Library (MKL). 

 
4. Performance Results 

 
The algorithm requires repeated simulations of chance that lend themselves well to parallel processing and 

vectorization. The simulations in this example are run in the following cases: 
 
1. Serially code without any parallelization,  
2. Array Notation (AN) for vectorization using Intel specific C++ language extensions, 
3. AN and Cilk implementation for task thread parallelism,  
4. AN and OpenMP implementation for task thread parallelism. 
 
To use target CPU architecture effectively, applications should effectively use VPU instructions on vector data, good 

locality of reference, and utilizes caches well in its core computations. However, the scheduling module (function cilkrts 
scheduler) of the Intel Cilk Plus runtime library is spent the majority of the CPU time on all platforms. It is beneficial to 
find a parallel scheduler with less overhead. For example, OpenMP framework is a better solution with less overhead and 
it is available for all processors (HSW, KNC, and KNL). The OpenMP standard provides similar functionality (tasking 
and dynamic number of threads in parallel regions), but in this application we were not able to achieve satisfactory 
performance results with OpenMP despite investing a greater development effort than we did with Intel Cilk Plus on 
HSW platform. 

 
Table 1. shows the results for the single precision solution of the tiled. The performance is expressed in the 

computation time (run time). The first two trials for each data point were not taken into the statistical average.  
 

 Intel Multi -core Platform Intel Many Integrated Core Xeon Phi Architecture 

Test (Monte Carlo) Haswell (HSW) Knights Corner (KNC) Knights Landing (KNL) 

Performance time [ms] 

1. Serial code 1973 25964 6837 

2. AN 275 1640 439 

3. AN + cilk for 47 21 6 

4. AN + omp for 54 15 4 

Recommended Customer Price (RCP)1 $594.00 $1,491.00 $2,436.00 

Thermal Design Power (TDP)1 140 W 300 W 215 W 

Theoretical Peak Performance (TPP)1 384 GFLOP/s 1.2 TFLOP/s 3 TFLOP/s 

 
Table 1. Timing results for used algorithm on targets CPU architectures 

 
On all architectures, we have achieved the same result (average discounted payoff is 49.439308) based on equation 

(5) and base scenario for an estimation of the valuation of a portfolio of European LIBOR-based swaptions using a Monte 
Carlo simulation. Timing results in table 1. show that the KNC times with serial code has 13 times more execution time, 
with 2.5 times more price and over 2 times more power than the HSW. 

                                                 
1 https://ark.intel.com/#@Processors 
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In below formulas we have evaluated the economic profitability and the energy efficiency using executing time (run 
time) in representative benchmarks. 

 
CostHSW = RCP*Time=594*47=27,918 (6) 
  
CostKNC = RCP*Time=1,491*15=22,365 (7) 
  
CostKNL = RCP*Time=2,436*4=9,774 (8) 
  
DissipationHSW = TDP*Time=140*47=6,580 (9) 
  
DissipationKNC = TDP*Time=300*15=4,500 (10) 
  
DissipationKNL = TDP*Time=215*4= 860 (11) 

 

Results show that the KNL with OpenMP evaluates payoff European LIBOR-based swaptions significantly faster 
(small the computation time), more economically profitable (8) (small the Cost factor) and more energy efficient (11) 
(small the Dissipation factor) than nearly comparable KNC and HSW. 

 
5. Conclusion 

 
In this paper, we evaluate the performance of such an optimization algorithm on modern accelerators (more 

specifically, the Intel Multi-core Platform Xeon Haswell, the Intel Many-core Xeon Phi Knights Corner and the Intel 
Many-core Xeon Phi Knights Landing). We present timing results for all codes and discuss the similarities and differences 
between the four implementations. Optimization and parallelization for the HSW, KNC and KNL code is done using the 
Intel Compiler v17.0 (vectorization) with Intel Cilk Plus and OpenMP frameworks. �:�H�¶�Y�H���D�F�K�L�H�Y�H�G���V�D�P�H���U�H�V�X�O�W�V�����D�Y�H�U�D�J�H��
discounted payoff is 49.439308) on all architectures. 

 
This study shows that the KNL with OpenMP framework is significantly faster, more economic profitable and more 

energy efficient than KNC and the HSW. The results shows that the thread scheduling overhead in Intel Cilk Plus 
framework has a negative influence on the overall performance on all architectures, because this is done via an internal 
scheduling mechanism based on a �³�Z�R�U�N���V�W�H�D�O�L�Q�J�´���W�R���G�L�V�W�U�L�E�X�W�H���S�D�U�D�O�O�H�O���Z�R�U�N-�L�W�H�P�V���D�P�R�Q�J���³�Z�R�U�N�H�U�V�´. In OpenMP, we 
inserted directives, which defines a parallel loop and each iteration will be assigned to threads dynamically. Further, the 
study shows that KNC architecture has not significantly better results than HSW with regard to the price and the energy 
consumption.  

 
In this way, KNL architecture have the best ways to compute, energy efficiency, economic profitability and achieve 

massive increases in performance with effectively used strong parallelization and vectorization (Cilk Plus and OpenMP) 
frameworks. 

In further work, we are pursuing ways to further research/apply this, especially for newer targets that have different 
architectural characteristics. 
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