28TH DAAAM INTERNATIONAL SYMPOSIUM ONINTELLIGENT MANUFACTURING AND AUTOMATION

DOI: 10.2507/28th.daaam.proceedings.048

EUROPEAN SWAPTION BY MONTE CARLO ESTIMATION ON
MODERN INTEL ARCHITECTURES

Eugen MudnicStipe CelarZeljko SeremetFilipa Matic

This Publication has to be referred asMudnic, E[ugen]; Celar, S[tipe]; Seremet, Z[eljko] & Matic, FJilipa] (2017).
European Swaption by Monte Carlo Estimation on Modern Intel Architectures, Proceedings of the 28th DAAAM
International Symposium, pp.038B56, B. Katalinic (Ed.), Published byABAM International, ISBN 9783-902734

11-2, ISSN 17260679, Vienna, Austria

DOI: 10.2507/28th.daaam.proceedings.048

Abstract

Modern computing resources provide substantial processing power but thquitee programmatic implementatioh

used numerical algorithms fine-tunedto the target CPU architecture. The main performance gains could be obtained
minimizing cache traffic and by efficient usingrotiltiple levels of CPU parallel unit&lonte Calo estimation of LIBOR

models is an example of challenging computational finance/computer programming problem. Theopeggaeeshe
efficiency ofmulticore (Intel Core Haswell) and manycor&agiorms (Intel Xeon PhKnight Cornerandintel Xeon Phi

Knight Landing for thecalculationEuropean LIBORbased swaption3arget @timizedprogrammatic implementations

of LIBOR calculatiorusing the Intel Cilk Plus and OpenMP standards are presented and benchmarked. Results show that
Intel Xeon Phi Knight Lading evaluate payofturopean LIBORbased swaptionaster, economically profitable and
moreenergy efficient than the Intel Xeon Phi Knight Corner coprocessor andCimteHaswell.

Keywords: Libor; Monte Carlo simulation; Intel Cilk Plus; OpenMP; lintaights Landing

1. Introduction

The London interbank offered rate, also calléB@R [1] is one of the main instruments in the debt marketitisd
the basis for many derived interest rate instrumeitsrg with numerous analytical methods, "brute forgl¥nte Carlo
approach could be wused to simulate prices ofLIBOR-based swaptions [1]. Numerous papers
[21131[4]1[51[61171[8][9][10][11] confirm that the Monte Carlorices ofLIBOR-basedswaptionsould not be calculated in
a reasmable time without high level gfarallelization Currently Intel processors are evolving from multic@neel Core)
toward manycoréntel Xeon Phijprchitecturesoffering massive parallelization capabilitegenon singleCPU. Although
the declaredheoreticapeak powerGFLOPS show significant performance gdior manycore processors, teeonomic
performanceper-price and performanegerwatt are still questionabl&he purpose of the present work is therefore to
first efficiently tuneparallelization of theLIBOR Monte Carlo calculation botlon multicoreand manycore CPUs, and
thento compare both their execution times amaineconomicperformance.

There aranany LIBOR test cases with differeliionte Carlo settinggL2][13][14]. In this papewe used algorithm
[15] based on anr@inal code by Paul Glasserman and Xiaoliang Z124{16][18] with subsequent modifications by

- 0351 -

28TH DAAAM INTERNATIONAL SYMPOSIUM ONINTELLIGENT MANUFACTURING AND AUTOMATION

Mike Giles[13][19]. The algorithm requires repeated simulations of chance that lend themseMespagdllel(thread)
processing and vectorization piulticore and manycore Int€IPUs.

For writing the parallelizatiorcode, we usedalternatively Intel Cilk Plus and OpenMP framework and Intel
vectorizationC++ languagextensionsas available usinthe Intel Compiler17.0 The used &orithm wasoptimizedto
the target CPU architecturegarding talifferencesn available instruction se{&VX 2.0, IMCI, and AVX-512)between
target architecturetntel Xeon Haswel{HSW), Intel Xeon Knight CornefKNC), andintel Xeon Knight_anding KNL).
We evaluatd the economicprofitability and the energy efficiency using computation time in representative benchmarks.
On these benchmarks, we demonstrate best perforraadadso economigains on théKNL .

The paper is organized as followSection2 describesused algorithmSection3 describesmplementation dtails
Sectiond evaluates showing performance results on real benchmarks. Septesents our conclusion and future work.

2. Usedalgorithm

Monte Carlo simulation is very usefultgchniquein capacity planning17] andto compute the correct prices for
financial options in computational finanespeciallyfor thecalculationof LIBOR. In mathematical financeve have two
classic methods used to computBOR in a Monte Carlo setting: the pathwise sensitivities and the Likelihood Ratio
Method. In this section, wirief review of LIBOR market models based on a finite set of maturities, as developed by
Jamshidiarj18].

The forward LIBOR rate at timigfor the accrual periodl]; Ti+1], witht " T;, is

.U:RLE@;%FSAéELSéé@a 1)
It is at timesnotationalconvenient to extend the definition ofgpeyond thedth tenor date; we do so by setting: P, L
. 6, for < 6¢ At a tenomate 6; the price of any boné;, with n > i, that has not yet matured is given by

%165 L Al et @)
more generally, at an arbitrary tink& 6,, we have

$6 LS ¢ RA o 3)

The timet valueC(t) and timeT valueC(T) of a derivative security (that can be replicated by trading in the basic bonds)
are related by the pricing rule

%P L $UR' B aC)

where{a W « °~ LV WI§H ILOWUDWLRQ JHQHUDWHG E\ WKH %URZQLDQ PRWLRC
From (4) and the definition o$" it follows that its price at time 0 is

%:r; L $:ir;U'B.4:6; F-;” A il

U5 5 /so-iu;c)

See[16] for more detailsThe algrithm then proceeds as follows:

calculateMonte carlo paths

calculate path for swaption kernel

calculates the forward LIBOR rates over the time interval

calculates the estimated strike price for the swaption

. discounts the forward LIBOR rate

Each option inalghoritm steprould be parellizedsing multiple threads or vectorization.

arwNE

3. Implementation Details

Intel compiler v17.@ffers support for differemhultithreadingparallelization frameworks. We have used alternatively
Intel Cilk Plusand OpenMP since they use very similar code extendiath of the parallel programming frameworks
has th@ own internal implementation and it is expected differertofpproblem we are solving.

- 0352 -

28TH DAAAM INTERNATIONAL SYMPOSIUM ONINTELLIGENT MANUFACTURING AND AUTOMATION

3.1. Intel Cilk Plus

Intel Cilk Plus[20] [21] is a powerful parallelization and vectorization framework that can effectively parallelize
complex problemdn this framework, the programmer specifies the coreptsof the application thaanbeen run in
parallel, and the runtime library takes care of assigning computing resources (cores) to the parallel tasks. This is done via
DQ LQWHUQDO VFKHGXOLQJ PHFKDQLVP EDVHG-RWHER DN KQHDZRIUNH WWR
are aconcept in Intel Cilk Plus similar to threads in other frameworks (for example, OpenMP). Because of the simplicity
of the API and high degree of behitlte-scenes automation, Intel Cilk Plus can dramatically reduce the development
workload and time whilproviding great performanchk the frameworkwe have onlythreekeywords in Intel Cilk Plus:
cilk_for, cilk_spawn and cilk_syntlamely; in ourstudy, we usectilk_for that enableprogrammers to parallelize C/C++
for loops

However, note that this easéuse ofintel Cilk Plusfunctionality does not release the programmer from following
the necessary precautions that apply to all parallelized loops. Avoiding issues such as race conditions is still the
SURJUDPPHUTV UhHASScRIgMtelECLKORIVA provides C++ templates referred to as reducers in order to
eliminate race conditions in parallel programs with certain patterns (sed22]y[23]. In fact, Intel Cilk Plusis the
vectorization and muHihreading capabilitiesare separable, and often the vectorization capabilitiesuseful in
conjunction OpenMAnN our studyintel & LON 30XV KDV SDUWLFXODUO\ ORZ FRVW 3VSDZQL
highly recursive code where the base cases tdmnforced to be large chunks.

3.2. OpenMP

The OpenMP programming modaiovides a API with set of compiler directives, function calls, and environment
variables that instruct the compiler how and where to use parallelism in the application. The directive based approach
makes it possible to write sequentially consistent sddeeasier maintenance. The watlown advantage of OpenMP
is its global view of application memory address space that allows relatively fast development of parallel applications.
OpenMP is supported by almost all major compi[2d].

TheOpenMP can be used effectively for the parallelization of the originally sequential code because this requires only
minimal code changes, and thus minimizing the logical mistakése programmer. The programmer does not create
threads directly within the application code, but just inserts OpenMP directives for the compiler, which generates the code
for threads during the translation. The advantage of this approach is obvimestoasesit is sufficient just to insert
directives to indicate which section of code wilhningparallel. The original code does not need to be changed. The
functionality of the originally sequenced code is clearly visible and the parallelizatierixeeparable. Obviously, this
approach is especially useful when it is necessary to parallelize the existing code.

In our study, we have used the following OpenMP directives valid for C/C++ programming languages:
X #pragma omp parallel {} +defines a setion of the parallel calculation
X #pragma omp for schedule (dynamic)tdefines a parallel loop and each iteration will be assigned to threads
dynamically

The pragmas control how the program works. By the C/C++ standards, even if the compiler does not support pragmas,
the program will run correctly, however, without parallelism. Theredoradding the OpenMP directives can be done
very safely[25]

3.3. Vectorization

Used CPUs have different instruction vectorization séle HSW CPUs provide 25®it vector registers and
AVX/AVX2 (Advanced Vector Extensions) instructicetsKNC providesb12-bit vector registers andClI instruction
sets The KNL nodes provide 518it vector registers antew AVX -512 instruction seintel compilerC/C++ language
extension for array notations simplifies thede vectorizatiorsince it translates array notatiany of targeted CPUs /
instruction setsHowever b get the most performance out of these processors, users needitodak&eunt of CPU
differences when applyingectorization instructions in their codehere the vdor register size is the most significant
parameterin order to enable the compiler to generate efficient code for the assembly step, we have iedtiéctand
constkeywords to our computational kernels.

This is rather straightforward to do as the pomational kernels are implemented using simple data structures and
abstractions are only build on top of that layer. We have used the vectorization report of {herfoteiance profiling
tool (Intel VTune Amplifie) to check that the compiler has indeed sufficient information to vectorize the time intensive
portions of our algorithm. Note, however, that the code foKtkik is essentially identicabtthe optimized code for all
platforms

In this article, all testare run onthethree machines with the following specifications:

- 0353 -

28TH DAAAM INTERNATIONAL SYMPOSIUM ONINTELLIGENT MANUFACTURING AND AUTOMATION

1) Intel multicore PlatformXeon HasweHlE (HSW). 6-corelntel Core i#5930K series processor based on the Intel
Xeon HaswelE architecture with two thread per coFeequency3.5 GHz; DDR432GB; L1d cache: 3kB; L1i
cache: 3XB; L2 Cache 256kB; L3 Cache 15360kB

2) Intel manycore Xeon Phi Knights Corner (KNC): a single-&fe Intel Xeon Phi coprocessor 3R2With four
threads per cordirequency 1.1 GHz; GDDR56 GB of RAM; L1d cache: 3X%B; L1i cache: 3%B; L2 Cache
28.5 MB

3) Intel manycore Xeon Phi Knights Landing (KNL): a single-68re Intel(R) Xeon Phi(TM) CPU 7250 processor
with four threads per corérequencyl.4GHz; DDR4: ® GB of RAM with 16 GB MCDRAM memonat 1013.140
MHz; L1d cache: 3%kB; L1i cache: 3XB; L2 Cache 34 MB

7KH EDVH VFHQDULR ZH XVHG IRU PRVW RI RXU UHVXOW We&tHenyv / K
structure of quarterly rates. There are 3 possible swaptions with 5 possible maturities)leegswaption and possible
strike prices for the 3 swaptions. Amount price varies over time typically determined as a function of time to maturity in
this example; however, it remains constant 0.2 values and number of simulations that Monte Czs166008.iThe
application of Libor Rate Model (LRM) to estimating delta entails knowledge of the transition density of the underlying
state variables. No such density is available in forward LIBOR models, so we use a Gaussian approximation using Intel
Math Kernel Library (MKL).

4. Performance Results

The algorithm requires repeated simulations of chance that lend themselves well to parallel processing and
vectorization. The simulations in this example are ruthérdollowing cases:

1. Serially code without anyarallelization

2. Array Notation(AN) for vectorizatiorusing Intel specific C++ language extensions
3. AN andCilk implementatiorfor taskthreadparallelism

4. AN andOpenMPimplementatiorfor taskthreadparallelism

To use target CPU architecture effectively, applications should effectively use VPU instructions on vector data, good
locality of reference, and utilizes caches well in its core computatitmvgever,the scheduling module (function cilkrts
scheduler) oftte Intel Cilk Plus runtime library is spent the majority of the CPU time on all platférim$eneficialto
find a parallekchedulemwith less overheadror exampleOpenMPframeworkis a better solution with less overhead and
it is available for all ppcessors (BW, KNC, and KNL).The OpenMP standard provides similar functionality (tasking
and dynamic number of threads in parallel regions), but in this application we were not able to achieve satisfactory
performance results with OpenMP despite invgstingreater development effort than wd diith Intel Cilk Plus on
HSW platform.

Table 1 shows the resultfor the single precision solutioaf the tiled. The performance is expressed in the
computation timgrun time) The first two trials for each data poimére not takeimto the statistical average.

Intel Multi -core Platform Intel Many Integrated CoreXeon Phi Architecture
Test(Monte Carlo) Haswell(HSW) Knights Corner(KNC) ‘ Knights Landing (KNL)
Performancetime [ms]
1. Serialcode 1973 25964 6837
2.AN 275 1640 439
3. AN + cilk for 47 21 6
4. AN + omp for 54 15 4
Recommended Customer Price (RCP) $594.00 $1,491.00 $2,436.00
Thermal Design Power (TDP} 140 W 300 W 215W
Theoretical Peak Performance(TPP)! 384 GFLOP/s 1.2 TFLOP/s 3 TFLOP/s

Table 1 Timing results for used algorithm ¢arges CPU architecture

On all architectures, we have achieved the same result (average discounted payoff is 49438808 equation
(5) and base scenarfor an estimation of the valuation of a portfolio of European LIB@2Red swaptions using a Monte
Carlo simulationTiming resultsn table 1show that the KNGimes with serial code ha$3 times moreexecution time,
with 2.5 timesmore priceand over 2imes more power than the HSW.

L https://ark.intel.com/#@Processors

- 0354 -

28TH DAAAM INTERNATIONAL SYMPOSIUM ONINTELLIGENT MANUFACTURING AND AUTOMATION

In below formulas we havevaluated the economic profitabilithé the energy efficiency using executtimge (run
time) in representative benchmarks.

Costisw= RCP*Time=594*47=27,918 (6)
Coskne = RCP*Time=1,491*15=22,365 @)
CosknL = RCP*Time=2,4364=9,774 8
Dissipatiorysw= TDP*Time=140*47=6,580 9
Dissipatiorkne = TDP*Time=300*15=4,500 (20
Dissipatiorkn. = TDP*Time=215*4= 860 (11

Results show thathe KNL with OpenMP evaluates paydffuropean LIBORbased swaptionsignificantly faster
(small the computation timejnore economically profitable Y§small the Cost factor) and more eneggficient (11)
(small the Dissipation factor) tharearly comparablg&NC andHSW.

5. Conclusion

In this paper, we evaluate the performance of such an optimization algorithm on modern accelerators (more
specifically, the Intel Multi-core Platform Xeon Haswellthe Intel Many-core Xeon Phi Knights Cornend thelntel
Many-coreXeon Phi Knights Landir)gWe present timing results for all codes and discuss the similarities and differences
between théour implementationsOptimization and parallelization for theSW, KNCandKNL code is done usine
Intel Compilerv17.0(vectorzation)with Intel Cilk Plus and OpenMP frameworksH{YH DFKLHYHG VDPH UHVX
discounted payoff is 49.439308) on all architectures.

This studyshows that th&NL with OpenMPframeworkis significantly faster, more economic profitable and more
energy efficient thatkKNC and the HSW. The resultsshowsthat the thread scheduling overheedIntel Cilk Plus
framework has a negative influence on the overall performanadl architecturedecausehis is dame via an internal
scheduling mechanism based@dZRUN VWHDOLQJ" WR GLWWBVEXMRQ 3B QfRRMPHI@YZ R UN
inserteddirectives whichdefines a parallel loop and eatération will be assigned to threads dynamicdiyrther, the
study shows that KN@rchitecturehas not significamy betterresuls than HSWwith regardto the price andhe energy
consumption

In this way,KNL architecturehave the best ways to compute, energy efficiency, economic profitabilitychrela
massive increases in performance with effectively used strong parallelization and vectorization (Cilk Plus and OpenMP)
frameworks.

In further work, we are pursuing ways further researchpply this, especially for newer targets that have different
architectural characteristics.

6. References

[1] Ferreiro, A.M.; Garcia, J.A.; LépeBalasJ.G. & Vazquez, C. (2014). SABR/LIBOR market models: pricing and
calibration for some interest rate derivatives, Appl. Math. Comput. 242, 2014, 9. 65

[2] Dupire, B. (1 S3ULFLQJ ZLWK D VPLOH "28.LVN SS

[3] Derman, E. & Kani, I. (1994). Riding on a smile, Risk 7 (2), 1994, piBR2

[4] Andersen, L. B. G. & Andreasen, J. (2000). Volatility Skews and Extensions of the Libor Market Model, Journal
Applied Mathematical Finance, Volume 7, 2000, p{82L

[5] Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous, Journal of Financial
Economics, Volume 3, Issues?l, JanuaryMarch 1976, pp. 12844

[6] Eberlein, E.; Keller, U. & Praus&. (1998). New insights into smile, mispricing, and value at risk: the hyperbolic
model, The Journal of Business, Volume 71, 1998, pp4851

[7] Jamshidian, F. (2001). Libor market model with semimartigales, Available from:
[https://www.researchgate.net/publication/228750716 LIBOR market model with semimarfingabesssed:
201796 H4

28TH DAAAM INTERNATIONAL SYMPOSIUM ONINTELLIGENT MANUFACTURING AND AUTOMATION

[8] GlassermanP. & Kou, S. (2003). The term structure of simple fargv rates with jump risk, The Journal
Mathematical Finance, Volume 13, Issue 3, 2003, pp+B4&

[9] GlassermanP. & Merener,N. (2003).Numerical solution of jumyaliffusion LIBOR market models, The Journal
Finance and Stochastics, 2003, pf271

[10]Belomestny, D. & Schoenmakers, J.G.M. (2011). A jwiffusion Libor model and its robust calibration,
Quantitative Finance, Volume 11, 2011, pp. B45.

[11]Eberlein, E. & Ozkan, F. (2005). The Lévy LIBOR model, The Journal Finance and Stochastics, 2823 ;pp.
348.

[12] Giles, M.B. & Glasserman, P. (2006). Smoking adjoints: fast Monte Carlo Greeks, RISK, 2006.

[13]Giles, M. (2007). Monte Carlo evaluation of sensitivities in computational finance, Tech. Rep. NA07/12, 2007.

[14] Glasserman, P. (2003). Monte Carlo MethadBinancial Engineering, Spring¥erlag, New York.

[15]Finance: Monte Carlo (2013) Available from: |https://software.intel.com/ems/codesanples/inteic- |

compiler/applicatiordomains/finance/Mont€arlg Accessed: 20196 H4

[16]Glasserman, P. & Zhao, X. (2000). Arbitrafgee discretization of lognormal forwarBjnance and Stochastjcs
Volume 4, Issue 1, 2000, pp. ¥B.

[17]Spicar, R. & Januka, M. (2015).Use of Monte Carlo Modified Markov Chains in Capacity PlannPrgpcedia
Engineeringvol. 100, pp.953:959

[18]Jamshidian, F. (1997). Libor and swap rate models, Finance Stochast. 1, 1997 80293

[19]Keegan, S. (2008). Vibrato Monte Carlo anthe calculation of greeks, Available from:

http://eprints.maths.ox.ac.uk/716/1/Thesis_SK| pdicessed: 20196 04

[20]Intel Cilk Plus, (2017). Available fronphttps://software.intel.com/ens/intetcilk-plug Accessed: 20196 H4

[21] Cilk home page, (2017). Available frofttp://www.cilkplus.orgf Accessed: 20196 H4

[22]McCool, M.; Reinders, .J& Robison, A. (2012). Structured parallel programming: patterns for efficient
computation, Elsevier, 2012, ISBN: 908L2-4159938

[23]Asai, R. & Vladimirov, A. (2015). Intel Cilk Plus for complex parallel algorithms: Enormous Fast Fourier
Transforms (EFFThbrary, Parallel Computing, Volume 48, 2015, pp. 1121.

[24]Akhter, S. & Roberts, J., (2006)Multi-Core Programming: Increasing Performand¢erough Software
Multithreading.1% Edn., IntelPress)SBN: 13: 9780976483243, pp: 360.

[25]Hofierka, J.; Lackp M. & Zubal, S. (2016). Parallelization of interpolation, solar radiation and water flow
simulation modules in GRASS GIS using OpenMP, Computers & Geosciences, Volume 107, Octobpp.2017,
20-27

	048

