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Abstract 

The purpose of this work was to find out to what extent the knowledge of dependence of impedance on the crack depth observed 
by means of microwave frequencies can be used as noninvasive techniques for biocompatible materials which are used in bone 
replacement. Primary quantity usable for this assessment was the reflection coefficient obtained from the standing wave ratio 
measurement. The measured and calculated results are given in the graphic form and are compared each other in common graphs 
which provide a good overview about basic quantities and simultaneously give an initiative for orientation on practical 
applications in the process of defect presence finding in materials used in bone replacement.  
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of DAAAM International Vienna. 
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1. Introduction 

Nowadays the significant need for the development of quantitative non-invasive and non-destructive testing 
(NDT) methods to measure bone implants stability and homogeneity is connected with exponentially increasing of 
biomaterials employing for improving the people’s life [1], [2], [3]. Our work was directed to the investigation of 
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using microwave resonant methods possibility both for in vivo and in vitro testing of homogeneity of biocompatible 
materials [4], [5]. Metallic implants interact with the surrounding biological environment [6], [7]. This interaction 
depends on chemical properties of bone surface and the shape of bone. 

The main competing technologies with microwave NDT are ultrasound [8], eddy current [9] and thermal 
imaging [10]. Ultrasonic waves usually require a contacting media. Microwaves also allow the crack detection under 
various coating [11] without the need for coating removal prior to testing. Microwave can potentially generate 
higher resolution images with deeper penetration than the thermography and eddy current techniques [12]. Several 
microwave techniques can be used for verifying their suitability for this purpose. 

The experiments in our work were realized on flat stainless steel sample and have shown that the defect acts like 
the loss waveguide and the reflected signal amplitude is strongly dependent on the depth of the defect [13]. The 
depth of defect in the volume of investigated biocompatible material can be calculated from the resonant frequency 
to which is defect capable and reach the maximum of reflected signal. 

Having considered these circumstances also with regards to the extensive area of using microwaves (e.g. [13] 
gives few investigations by means of microwaves) we decided on the basis of theoretical assumption to take heed of 
using microwaves for these purposes. 

2. Theoretical basis and applied formulae 

As a general approach to the problems, Maxwell equations provide the basis to solution, and for the experimental 
part, we have chosen the waveguide technique, making use of the same theoretical basis. 

Every component of electromagnetic field satisfies the same equation with three coordinates and for the 
transversal electric field E having a sinusoidal character with the angular frequency ω  
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From the condition for E on the waveguide surfaces it can be shown that 
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where cλ  is the cut-off wavelength. 
The complex impedance Z  which characterizes the conditions in waveguide is 
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We use transversal electric (TE) waves and therefore we give the representation only for these ones. The 
characteristic impedance of the waveguide is obtained 
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with 
0

0  the characteristic impedance of the free space. 

As our experiments are based on the reflected signal from defects, our measurements and calculations are based 
on exploiting the waveguide technique, where the complex reflection coefficient ρ  can be measured and it is given 
as 

E
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with E  and E  the intensities of reflecting and incident waves respectively. 
Taking into account the expressions of E  and E  by means of β  
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where 0  is the phase in x = 0 and 0  is absolute value in the same point. Because the incident and reflected 
wave creates the standing wave, standing wave ratio (SWR) 
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can be also measured and from the minE  position ( mind ) it is possible to determine the phase 
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But with regards to the definition of ρ  
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The impedance can be calculated from measurements as 
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The complex impedance Z is calculated 
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where π2 mind  is the phase angle of , mind  is the distance of the first minimum of electromagnetic wave 
from the load. s and mind  are directly measurable on the microwave slotted line and in the similar way g  can be 
determined, complex impedance of the investigated sample can be calculated from (14) . 

In the case when SWR has such little value that it is impossible to measure it on one measuring range, we can 
determine it by measuring of w in the minimum of standing wave (Fig.1). 

 

 

Fig. 1. The method for small SWR measurement. 

and calculate it from equation 
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These equations allow to evaluate our measurements and after plotting the graph, also to take up a stand point 
towards the experimental results. 
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3. Experimental set-up and results 

The experiments were carried out on the standard laboratory microwave equipment with the connections represented 
in the schematic illustration (Fig.2), [14] 

 

Fig. 2. Experimental set-up: K – klystron, KPS –klystron power supply, IM- impedance match, VA – variable attenuator, MT – magic T, A – 
adapter, CL – coaxial line, FM – frequency meter, WRS – waveguide rotation change–over switch, FI – ferrite isolator, SWD – slotted section, 

FC – ferrite circulator, CD – crystal detector, OW – open waveguide, SA – selective amplifier, S – sample, MSH – movable holder. 

The reflex klystron modulated with 1 kHz signal was used as a source of microwave signal. The measurements 
were carried out on frequencies from the ranges X and G band on the wave 10TE . The measured quantities were 
detected on the selective amplifier on the end of the line. The switch enables measuring both SWR and direct 
reflections in the same connection. 

The measurements of SWR were taken with the switch position to the open waveguide (OW). OW was 
terminated with metal samples with the artificial slots representing cracks of the different depth and width. The 
samples with the defect depths from 5 to 20 mm were at disposal and the SWR was measured for every depth at 
each frequency by the standing wave detector. The measured and calculated values are plotted in Fig.3.  

 

Fig. 3. Dependence of SWR on the defect depth for seven frequencies. 

The successive curves represent values of waveguide terminating impedance in the waveguide–defect contact 
position although they show quasiresonant course. Equations (11), (12) and (13) show that there is direct connection 
between them. From Fig.3 it was possible to assume that individual samples at particular frequencies behave as a 
quarter–wave transformers. So that to confirm this assumption we further increased continuously the defect depth on 
a special preparation and the measured values are plotted in the separate graph (Fig.4). 

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12 14 16 18 20 22
deph of defect [mm]

S
W

R
 [-

]

f=10,20GHz f=10,03GHz f=9,61GHz f=9,20GHz
f=8,40GHz f=7,70GHz f=4,92GHz



1691 Dagmar Faktorová et al.  /  Procedia Engineering   100  ( 2015 )  1686 – 1695 

 

Fig. 4. Dependence of SWR on the defect depth for several frequencies. 

It can be seen from the all three curves (for frequencies 10.14 GHz, 9.23 GHz, 8.25 GHz) that the quarter–wave 
transformer effect really manifests itself at individual frequencies at three multiple of g/4 . 

For the more complex assessment of the measured results from the point of view of quantities with which the 
microwave technique operates, the values of impedance were calculated (13), and their dependences on the defect 
depth were plotted at the frequency 9.23 GHz, (Fig.5). 

 

Fig. 5. Dependence of amplitude and angle of impedance on depth of defect. 

An illustrative image about impedance course for the defect quarter–wave transformer affords Fig.6, where 
closed curves belongs to the defect depths g/4  and 3 g/4 , in concordance with figure 4. 

To get information how the defect width influences the reflected signal, we have measured the amplitude of the 
reflected signal with the moving probe position. The results for different defect widths are presented in Fig.7 . 

From the graph it can be seen that the sensitivity is increasing with the increasing of the defect width. The least 
recordable defect width was from the interval <0,05mm ÷ 0,1mm> what was confirmed by repeated measurements, 
too. 

In Fig. 8 are represented the experimental results for influence of probe position above defect on defect 
impedance absolute value and angle.  

Because the sample with defect acts like the complex impedance the information about its amplitude and angle is 
needed in the process of NDT. The next measurement was directed to the assessment of the open waveguide loading 
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impedance character. The probe was moving above the artificial defect in the sample the same way like the depth of 
defect was investigated. Measurements were done at the frequency 9.23 GHz. From the Fig. 8 it can be seen that the 
existence of defect in the sample can be notified by changing in the amplitude and also the phase of complex 
impedance and the probe can be used in the automated process at finding the presence of defect in the sample. 
 

 

Fig. 6. Dependence of impedance angle  on the defect depth. 

 

Fig. 7. Dependence of signal amplitude on probe position. 

 

Fig. 8. Dependence of impedance absolute value and angle on probe position. 
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After calculating the real and imaginary part of defect complex impedance, the Lissajoux curve was represented 
for the various position of open waveguide sensor moving above defect, Fig.9. By comparison of Lissajoux curves 
in Fig.6 and Fig.10, it can be seen the various character of Lissajoux curves for changes in depth of defect and 
changes connected with sensor moving in the vicinity of defect. The changes in the depth of defect lead to close 
curves and in the opposite side the moving of open waveguide sensor above defect leads to the open curve. 

 

Fig. 9. Lissajoux curve for various positions of open waveguide sensor. 

With the open waveguide measurement it could be possible to obtain information about the defect orientation. 
Changing the angle between the waveguide H–plane and the straight line passing along the defect we measured the 
reflected signal amplitude and the mentioned dependence is presented in Fig.10. 

 

Fig. 10. Dependence of signal amplitude on angle of rotation. 

The orientation of defect is very important information, which can lead to the prediction of defect grooving in 
various applications.  The measurement of defect orientation was done in connection with ferrite circulator (Fig. 2). 
In experiments we used the defect with the width 0.1 mm. It can be seen from Figure 10 that the defect rotation has 
considerable impact on amplitude microwave signal reflected from defect with varied orientation. This conclusion 
proves the above investigated statement that t defect acts like the complex impedance and can influence its 
amplitude and phase. 

Conclusions 

The relevant literature sources mention about different surface, subsurface and stress-corrosion defects which can 
occur by production and use of biocompatible materials in biological environment. We directed at deeper defects, 
which can became as a problem for some conventional techniques in the process of inhomogeneity finding. Our 
work was toward microwave technique utilization through nontraditional way and we have paid our attention 
primarily to the experimental verifying of microwave use for defects detection in biocompatible metals. Cracks were 
tested from the point of view the waveguide techniques and on this base we could characterize it as special 
waveguide section and under certain conditions the defect can manifest itself as a quarter – waveguide transformer. 
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This property allows detecting it as a quasiresonant effect and from finding this out we could state what frequencies 
appertain to the individual defect depths. 

It can be concluded that it is possible to find the open defect in metal sample with open waveguide probe and 
using the information about amplitude and phase of complex impedance changing, in order to estimate the 
geometric properties of the defect in metal sample. 

Finally we can state that microwaves can be used for finding out crack presence in metal biocompatible 
materials, its depth, width, and orientation and in cooperation with other method they can be used as effective tool 
for material testing. 
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