
 Procedia Engineering 100 (2015) 1475 – 1484

Available online at www.sciencedirect.com

1877-7058 © 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of DAAAM International Vienna
doi: 10.1016/j.proeng.2015.01.519

ScienceDirect

25th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM
2014

Control of the Mobile Robots with ROS in Robotics Courses

Khassanov Alisher, Krupenkin Alexander, Borgul Alexandr*
St. Petersburg National Research University of Information Technologies, Mechanics & Optics,

197101, 49 Kronverkskiy av., Saint Petersburg, Russian Federation

Abstract

The paper describes implementation of mobile robots programming process with Robot Operating System (ROS) in student
robotics courses. ROS provides different tools for data analysis, facilities of multiple robots and their sensors, teleoperation
devices interaction thereby targeting engineering education. An example with the multiagent interaction between agent-evader
and agent-pursuer were taken as the basic navigational task. The computed behavior of the virtual agents were successfully
transferred to the quadcopters, Lego Mindstorms NXT based and Robotino robots. Diverse experimental tests were conducted
using the algorithms on virtual agents and robotic platforms.
© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of DAAAM International Vienna.

Keywords: ROS; robotics; education; multiagent system; remote control

1. Introduction

We should think about the future of robotics and control science in close connection with the present of control
education. Advanced educational tools are used to make study more illustrative and therefore more attractive for the
young specialists. Current technological achievements allow us to develop high-quality courses in the modern
control theory and robotics courses. For example, mechatronic and robotic research equipment is very popular now.
Such experimental setups represent compact high-tech tools, which are the great substitution for the traditional in
control workshops computer simulation software like Matlab and Simulink. From educational point of view, it has
several advantages. First of all, with such laboratory equipment students have opportunity to intuitively understand

* Corresponding author. Tel.: +7-951-664-47-88.

E-mail address: borgulalexandt@gmail.com, 148586@niuitmo.ru

© 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of DAAAM International Vienna

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2015.01.519&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2015.01.519&domain=pdf

1476 Khassanov Alisher et al. / Procedia Engineering 100 (2015) 1475 – 1484

the basic control theory principles and feel how formulas really work in practice. On the other hand, students can
obtain additional knowledge in the related areas such as robotics, computer science, information theory,
programming, and electrical and circuit engineering. Moreover, young engineer can better understand the critical
value of the real technical systems constraints during experimental validation. Thereby, using mechatronic and
robotic laboratory setups, we can provide students possibility to follow the robotics and control system development
process from the formulas to the implementation, excluding the risk to damage expensive equipment. We use this
equipment primarily in the bachelor student’s workshops as the first touch on the more advanced master courses [1].
At the same time we do understand that the deeper we dive in the more we can explore. Hence, the described
systems can be used even in the doctoral research.

But to be able to control different robotic and mechatronic setups we should provide appropriate programming
and developing tools to the students. Commonly used Matlab and Simulink allow making researches and controlling
robots only having proper described mathematical model. And there are only few robots with the free spread
models. Though every robot can be described and programmed with common programming languages such as
C/C++ or Python, but it’s not comfortable to learn and use different languages for every part of the complex project
or the new model of the robot. Meanwhile there are diversity of the robots should be studied during the robotics
course for good preparation. And ROS (Robot Operating System) looks like the best solution for this problem.

Standards developed by Willow Garage and realized as ROS infrastructure allow combining in unified
development environment both the software and hardware components. It is completely comfortable to use in case
of students society where they can be targeted on engineering problems. Students should only know the
programming language and ROS infrastructure to be able to use diverse instrumental set for different educational
and practical tasks. ROS is the worldwide open source project with the huge database of available robots’ models,
sensors, and guidebooks, supported programming languages, simulation environments. There are a lot of advantages
described in [2], [3] and [4]. That’s why we implemented ROS in robotics courses at the Control Systems and
Informatics department of the ITMO University.

Let us present how we solved two tasks and developed complex projects with the students during the course and
studying process. You can find the description and step-by-step solution process of the remote control of the mobile
robots via the Internet in the second part of the paper. And the solution of one of the most popular tasks about the
multiagent system developing with navigation providing and task manager presented in the third part of the paper.
The simplicity and convenience of using ROS instruments are shown in the both tasks. The practical experiments
are conducted and presented as well.

2. Teleoperation interface gateway for ROS

One of the common tasks during the Robotics course is developing the robotic system with the remote control.
There are some robots under ROS should be provided with the remote control via the Internet. Control of robots will
be independently exercised from various places. It is necessary to provide high level of safety, flexibility and
performance. There is a solution for this very task proposed and described earlier in our papers and similar papers
[5]. There is a complex task, which allows students to study almost all the main parts of the ROS environment. Let
us present more or less detailed example explanation.

2.1. Introduction to the task

Let’s start from the discovering of available tools. At the moment there is a software providing possibility of
interaction with the robot from the browser, it is called as ROSLIBJS (http://wiki.ros.org/roslibjs) and ROS Bridge
Suite (http://wiki.ros.org/rosbridge_suite). ROSLIBJS uses Web Socket for connection with Bridge Suite that is
carried out in namespace of ROS and can interact directly with nodes. In that case the solution of start of Bridge
Suite on the separate server for circumvention of restrictions of NAT and connection of the robot to the server
through a virtual private network looks logical. In our case OpenVPN is chosen as safe and cross-platform decision.

1477 Khassanov Alisher et al. / Procedia Engineering 100 (2015) 1475 – 1484

Fig. 1. Simple gateway.

As shown in fig. 1 the robot connects to the server through the virtual private network, with the server the web
browser through WebSocket also interacts, such diagram provides high performance at the expense of a complete
support from Bridge Suite event - the oriented approach and safety at the expense of data encryption on all transit.
LinuX Containers LXC (http://linuxcontainers.org) are used here for Bridge Suite start in an isolated surrounding
with limited resources, but without overhead. The approach described above can be expanded for independent
control of a set of robots to start with several LXC-containers. However there are also some difficulties:

 Automatic service of containers (creation, start, stop)
 Traffic routing from the robot to the container and from the container to a web browser
 Authorization system for access to Bridge Suite from the robot and a web browser

2.2. Server side

Students study the main organizational structure and protocols at this step. The server part of the system provided
by two large modules: Web server and system of containers. Binding of these two systems is carried out by means
of a database.

We propose the Web server to be based on Yesod (http://www.yesodweb.com) framework and provides project
business logic: authorization of users, creation, deleting and configuring of robots: adding and setup of plug-ins,
loading of a configuration and OpenVPN keys. The set of scripts of easy-rsa (http://openvpn.net/easyrsa.html) is
used for keys of the X509 standard developing. Let’s skip the part of the database’s model description used by a
Web server to not make the paper too long.

 The system gives opportunity to customize the control interface of the robot by adding of plugins, with the robot
the set of the extensions possessing unique parameters for each robot communicates. The more detailed information
about plugin system presented to the students provided further.

2.3. Containers

The system of containers is engaged in service tasks such as creation, start and stop of LXC containers,
conjugation of containers to the OpenVPN channel, conjugation of the container to external WebSocket port. The
part of the database models’ description file used by a system of containers presented below as an example.

Node # Some server is a Node
name Text

address Text
Container # LXC container

robot RobotId
node NodeId Maybe

address Text Maybe # Container address on virtual ethernet
UniqueContainerRobot robot

NewContainer # New container queue for Creator thread
ink ContainerId

Connection # Table of current connections for stats

1478 Khassanov Alisher et al. / Procedia Engineering 100 (2015) 1475 – 1484

container ContainerId
node NodeId

since String Maybe
vaddress String Maybe # Virtual address
raddress String Maybe # Remote address

sent Int Maybe # Sent bytes
eceived Int Maybe # Received bytes

The management system is partitioned by containers into two independent threads: Creator and Connector. Main
objective of a Creator thread is creation of the new container. But it continuously monitors queue in a database and
creates the new container in case of request appearance. The modified Ubuntu Core 12.04.3 version packed into
SquashFS (http://squashfs.sourceforge.net) is used as core file system of the container. The system is mounted in the
read-only mode. It makes possible to use the same root for an unlimited number of containers. Main objective of a
Connector thread is monitoring of the new OpenVPN connections and their binding with appropriate containers
from the both launches of the new connections as well as stops in case of connection comes to the end. Binding is
carried out by gateway facilities of packets as a standard firewall of Linux.

2.4. Routing

Transits of packets both from the specific robot to the container and from the container to a web browser are
presented in fig. 2 and fig. 3. Thin lines present data streams; network interfaces are drawn by squares and circles
shows the software.

Fig. 2. Robot connection.

Fig. 3. Web browser connection.

2.5. Security

According to the modern trends it’s very important to study and implement security solutions, especially in the
complex systems using Internet. ROS provides good infrastructure for the developing of such kind of a solutions. In
this case the high level of security is provided with the help of TLS encoding applied to all transit data and with the

1479 Khassanov Alisher et al. / Procedia Engineering 100 (2015) 1475 – 1484

isolated containers for Bridge Suite. It protects the software with the direct access from outside within the virtual
surroundings.

2.6. Browser side

This part of the system is implemented in the JavaScript language using ROSLIBJS for representation of the
abstraction of interaction with ROS nodes. In very common case, with the switched off plugins all the code in the
system consists of instant connections creation of the container and pointer located on it in term of global variables
which then all connect plugins and make them available for execution.

var ros = new ROSLIB.Ros(),host="46.47.232.219",port=7009,proto="ws";
ros.connect(proto+'://'+host+':'+port);
IP address of the container and port for the connection can be turned out from the database in case of dynamic

generation of the page. Further extension of functionality is supposed to be performed at the expenses of the
connection of unique set of plugins for each separate robot.

2.7. Conclusion of the part

As the result of this task performing students study not only how to use ROS but have the safe and productive
system of remote control of several independent robots. This system presents full-fledged possibility of adding and
deleting the robot, archive loading with settings on the local computer. The server part is fully implemented and is
available for the check under the open source license at the address: https://github.com/akru/tigro-lxc. The web
interface has only two plugins. There are ImageView and KeyboardTeleop. The prototype of TIGRO is located at
the address http://tigro.akru.me:3000. There is a huge possibility and amount of available work for improving and
developing in this system. Though the system itself represent fully functional model with a lot of advantages. So,
there are a lot of tasks for the student developers in the Python, JavaScript and Haskell languages for extension of
functionality, fixing of errors.

3. Developing of mobile robots multiagent system with ROS

An interest to the developing of multiagent systems significantly increases last decades. There are a lot of
researches and papers on this topic with the different proposed approaches and algorithms. Developing of such kind
of a system is one of the important complex tasks, which allows students to study simultaneously methods of
modern control theory, mathematical modelling, system identification and programming languages. Let us present
our approach to this task solving with the theoretical description and practical implementation.

Mobile robots is a class of devices appropriate for problems solving which require the presence of operation unit
and sensing system in the difficult to access areas. In everyday life the main reason of this situations appearance is
technogenic accident and catastrophe, elemental calamity (fast acquisition, search and delivery of assistance is
requires), celestial bodies surface research, the hard labor in explosive atmosphere or different dangerous areas. So
the tasks of trajectory searching and following in uncertain environment have a big practical validity. Complex
decision of that task allows finding the optimal trajectory for all machines in formed circumstances. This task may
be solved in a distributed manner with duty of few robots, which called agents and has ability to work together with
some problems simultaneously. We based our research on the previous works such as [6].

Leader-follower formation control is applied as the basis for multiple wheeled robots and unmanned aerial vehicles (UAVs).
This approach’s difference is in a simple way of algorithms description. It makes easier understanding by the students and easier
realization. But at same time it allows adding different optimization criterions. The control objective for the follower UAV is to
track its leader at a desired- separation, angle of incidence, and a bearing by using an auxiliary velocity control.

3.1. Theoretical description

The technical challenge for the control designer is facing an autonomous collaborative operations system in real-
time sensing, computing and communication requirements, environmental and operational uncertainty, hostile

1480 Khassanov Alisher et al. / Procedia Engineering 100 (2015) 1475 – 1484

threats and the emerging need for improved robots team autonomy and reliability. Let us introduce an approach for
the coordinated control of multiple robots and formation control with the collision avoidance. The hierarchy
connected with global situation awareness and team mission planning, local knowledge, and formation control and
obstacle avoidance.

Let us consider some group of several interacting agents with dedicated functions. The formation control problem
is viewed as an interaction of n pursuers and n evaders. Stability of the formation of vehicles is guaranteed if the
vehicles can reach their destination within a specified time. Assume that the destination points are avoiding the
vehicles in an optimal way. A two-vehicle example is shown to illustrate the approach. Vehicle model is simplified
to point mass with acceleration limit for the simplicity. Collision avoidance is achieved by designing the value
function so that it ensures that the two vehicles move away one from another when they come too close to each one.
The problem of control algorithm developing is multiple autonomous vehicles should maintain a formation during
traversing a desired path and avoiding inter-vehicle collision. It may be written as the formation control problem.
Each individual robot in the team is considered as an agent with particular capabilities engaged in executing a
portion of the mission. The primary task of a typical team of robots is to execute faithfully and reliably a critical
mission while satisfying local survivability conditions. Let us consider the group of two agents U1 and U2 as an
interaction between pursuer and evader. The next solutions are appropriate for the whole group of robots in the team
as well. The obstacles for this system is static solid objects like trees or columns in the uncertain area. The sensors
for obstacles detection are placed only on the base of the evader agent U1. It allows detecting the barrier on the
distance r. Pursuer agent U2 moves with the help of data achieved from the agent U1 by wireless communications.
Also agent U2 should optimize the trajectory of agent’s U1 movement. This approach is convenient due the one
agent resolves the tasks of obstacles avoiding for all the other agents. Other vehicles could solve different tasks and
don't lose time and energy for impassable objects searching. The issue of the trajectories optimization is
minimization of the cost function f(x) [7]:

i
max , (1)

where the argument is controlled variable of the angular velocity of an agent at the moment ti. In control system
agent-pursuer should has a big part of the agent-evader’s trajectory for the analysis. Control algorithm for robot
movement described further. Agent U1 equipped with the distance sensors. It moves with the collisions avoiding
and sends the coordinates to the agent-pursuer. In case of obstacle detection agent U1 sends the signal to agent U2
and makes a maneuver. After the maneuver it sends another signal. Agent-pursuer receives the coordinates of the
trajectory of the agent U1 during the maneuver and after that executes path-smoothing algorithm and continues
movement with the new coordinates. Evaluating flight path error shouldn't be above the range of vision of distance
sensors during the new path. Let’s consider the trajectory of the agent-evader movement as a sequence of n points
with coordinates , where Gradient descent with fixed step size is used for the cost function
evaluating. Associate every pair of coordinates of the first agent trajectory with the new pair of coordinates

. The minimum of angular velocity achieves with the next minimization criterion:

, (2)

, (3)

Here - coordinates of point of the required trajectory on the step (i+1). Equation (2) minimizes the
distance between the points on the initial trajectory and according point on the smoothed trajectory. Equation (3)
minimizes the distance between two closest points on the desired trajectory. Let's provide for every criterion some
weight of functions in range from 0 to 1. It means the correspondence level of initial trajectory to optimized
trajectory for criterion (1). With weight of criterion (3) increasing the length of trajectory decreasing and degree of
scaling becomes higher. Weight functions selects of thumb and complies with requirement , where -

1481 Khassanov Alisher et al. / Procedia Engineering 100 (2015) 1475 – 1484

minimization coefficient for (2) and - weight of criterion (3). According to the (3) some incrementation should be
added to the desirable point on the trajectory in the direction of the next desirable point:

 (4)

The resulted gradient descent algorithm for our task:

 (5)

That coordinates transformation repeats until the difference between the value of the last element of array and
desirable value becomes less than error margin. Fig. 4 shows the behavior model for group of agents in case of
different obstacles positioning.

a b

Fig. 4. Model of group behavior in case of: (a) – single obstacle, (b) – multiple obstacle.

3.2. Realization in ROS

We propose the realization in ROS to the students right after the theoretical description of the system. Let us
describe one of the tasks. We kindly advise to use the Haskell language for realization as the most convenient for
this kind of tasks with a lot of advantages. Let us not to provide you with example cause it takes 30 rows of code.
But it is the minimal available amount for this problem solving.

So, the global planner in Haskell was written without transformation it into the node. Describing the desirable
behavior we have the next scenario:

 Leader agent starts moving on the fixed distance from the follower. Leader moves until it meets the obstacle.
 Leader sends the command about stop to the follower and starts turning.
 Leader moves fixed time after the turn while saving path points.
 Then it sends saved trajectory to the global planner. Global planner optimizes it according to the algorithm and

then follower agent receives optimized trajectory.
 Local planner in the follower agent allows controlling velocity of the robot and traversing the path on the

optimized trajectory.

b

1482 Khassanov Alisher et al. / Procedia Engineering 100 (2015) 1475 – 1484

The simple case of simulation plots illustrated in fig. 5.

a b

Fig. 5. Simulation plots of the trajectory: (a) – leader agent, (b) – follower agent.

Students supposed to realize the planning algorithm in Haskell and the node of the robot in Python. We have it
but don’t show on purpose. At the final student receives file with the two simple and comfortable for further
applying steps. Step one is a step of algorithm from the previous part of the paper and second step is execution of
the optimization algorithm.

Meanwhile we should remember that for the algorithm realization supposed leaderpath[n+1] = leaderpath[n],
leaderpath[n-1] = leaderpath[0]. And all the points of the optimized path converge to leader_path[n-1] in case of
increasing of the iterations number.

3.3. Simulation and practical implementation

ROS provides very well balanced simulation environment Stage [8]. It’s useful tool to see how the calculated
behavior of the robots will look like. And it’s also very powerful tool cause you can see if you have mistaken
somewhere. So, the next task in the course is to make simulation in Stage right after realization of the algorithm.
Simulation screenshots of our algorithm with the 3 robots are shown in fig. 6.

a b

Fig. 6. Multiple virtual agents collision and obstacles avoiding process. (a) – time 1, (b) – time 2.

After the simulation if everything goes fine the algorithm can be easily ported on every single platform using
ROS native supported platform drivers. The well-known platforms Lego Mindstorms NXT, quadcopters and Festo
Robotino were taken as a basis for the practical experiments. The same algorithm from the Stage was uploaded in
the both platforms via the wireless channel. Experiments were conducted in the laboratory of the Department of
Control System and Informatics of the ITMO University. The task was to go through the set of obstacles and reach
the finish line with the formation holding during the movement. The images of the experiment are shown in fig. 7.

1483 Khassanov Alisher et al. / Procedia Engineering 100 (2015) 1475 – 1484

a b c

Fig. 7. Screenshots of the experiment. (a) – Lego Mindstorms, (b) – Robotino, (c) – quadcopters.

The quadcopters and Robotino showed very good results according to their embedded navigational system and
quality of the odometry sensors. And some additional tuning was required for the Lego Mindstorms NXT because of
the equipment quality. In general all the computed virtual agents behavior were successfully realized with the real
robots. All of them avoided all the obstacles and finished the distance. It can be very comfortable for students to do
any changes and add some sensors or machine vision to this task and make it more complicated. Majority of sensors
and platforms has native support in ROS.

Conclusion

Exploration of the new ways of control study is very important for efficient training of the next generation of
engineers. New software and experimental tools that can be used in student’s workshops and research projects are
only one of the many directions to attend.
The problem of the students’ preparation according to the modern tendencies and purposes are presented. And some
examples with the practical validation are shown. We presented our approach to preparing students during the
robotics course. It mainly based on the ROS step-by-step studying as elements of the complex tasks. It allows
students to learn different programming languages, software tools, learn project work. Our developed algorithms can
be easily uploaded in the real robots doesn’t depend on model of the robot. We demonstrated one step-by-step
approach to creation a teleoperation interface and the process of creation real-time multiagent system with the global
planner. There is a unique solution with easy implementation in every system. The developed teleoperation interface
can be used with every model as it written in the global level and separated in the node. It is an important decision
allows using it in the both global and local navigational tasks. The simulation results for the proposed multiagent
system match the theoretical calculations and used as laboratory work. Afterwards students often use this tool in
there usual tasks. Both simulation and practical experiments were conducted. The results of theoretical and practical
results are very close. It proves the stability of the solutions and advantages of using simulation software in
educational process. Useful tools were created and shared for everybody according to the open source policy.
Further we are planning to add more nodes and tools developed by our students, and ourselves and write a textbook
based on our approach.

Acknowledgements

This work was partially financially supported by Government of Russian Federation, Grant 074-U01.
This work was supported by the Ministry of Education and Science of Russian Federation (Project

14.Z50.31.0031).

References

[1] Bobtsov, A.A., Kolyubin, S.A., Pyrkin, A.A., Borgul, A.S., Zimenko, K.A., Evgeniy, R.Y. Mechatronic and robotic setups for modern control
theory workshops, (2012) IFAC Proceedings Volumes (IFAC-PapersOnline), 9 (PART 1), pp. 348-353.

[2] Ruiz, E., Acuña, R., Certad, N., Terrones, A., Cabrera, M.E. Development of a control platform for the mobile robot Roomba using ROS and
a Kinect sensor, (2013) Proceedings - 2013 IEEE Latin American Robotics Symposium, LARS 2013, art. no. 6693270, pp. 55-60.

1484 Khassanov Alisher et al. / Procedia Engineering 100 (2015) 1475 – 1484

[3] Bayar, V., Akar, B., Yayan, U., Yavuz, H.S., Yazici, A. Fuzzy logic based design of classical behaviors for mobile robots in ROS middleware,
(2014) INISTA 2014 - IEEE International Symposium on Innovations in Intelligent Systems and Applications, Proceedings, art. no. 6873613,
pp. 162-169.

[4] Mendonça, R., Santana, P., Marques, F., Lourenço, A., Silva, J., Barata, J. Kelpie: A ROS-based multi-robot simulator for water surface and
aerial vehicles, (2013) Proceedings - 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013, art. no. 6722374,
pp. 3645-3650.

[5] Hold-Geoffroy, Y., Gardner, M.-A., Gagné, C., Latulippe, M., Giguére, P. Ros4mat: A matlab programming interface for remote operations
of ROS-based robotic devices in an educational context, (2013) Proceedings - 2013 International Conference on Computer and Robot Vision,
CRV 2013, art. no. 6569209, pp. 242-248.

[6] Bobtsov, A.A., Borgul, A.S. Multiagent aerial vehicles system for ecological monitoring, (2013) Proceedings of the 2013 IEEE 7th
International Conference on Intelligent Data Acquisition and Advanced Computing Systems, IDAACS 2013, 2, art. no. 6663037, pp. 807-809.

[7] I. G. Chernorutsky Methods of decision making. Saint-Petersburg, BHV – Petersburg, 2005, 416 p.
[8] Pinho, T., Moreira, A.P., Boaventura-Cunha, J. Framework using ROS and SimTwo simulator for realistic test of mobile robot controllers

(2015) Lecture Notes in Electrical Engineering, 321 LNEE, pp. 751-759.

