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Abstract 

In this work method of synthesis of system of automatic correction of program trajectory of motion of multilink manipulator 
installed on underwater vehicle was discussed. Developed system allows solving problem of fast and high quality performing of 
underwater manipulation operations with less operator fatigue at underwater vehicle hang mode near object of work even at 
unintended displacements of underwater vehicle from initial position. Using of synthesized system is assumed with well-known 
systems of automatic stabilization of underwater vehicle in desirable point of space. 
Proposed automatic correction provides additional movements of multilink manipulator effector. This correction is based on 
information about actual angular and linear displacements of underwater vehicle from initial position and information about 
constantly varied configuration of multilink manipulator. 
Results of performed mathematical modeling have confirmed high efficiency of synthesized system. 
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1. Introduction 

Today underwater vehicles (UV) [1, 2] which have multilink manipulators (MM) [3-5] actively used for research 
and development of World Ocean. Many complex technological operations are possible to perform at any depth 
using UV with MM. Tasks of fast and qualitative performance of underwater manipulation operations have greatest 
relevance in UV hang mode near object of work. Some systems of UV automatic stabilization in hang mode with 
working manipulator [3, 4] are created today. These systems allow solving problem of fast and high quality 
performing of manipulation operations with less operator fatigue. Herewith generally, desired trajectory of MM 
effector motion gets and sets before operating. MM effector should precisely move on specified trajectory after 
entrance of UV in given point in space with given orientation (possibly in manual mode). 

However, working in hang mode UV unplanned displaces from desirable position under influences of sea 
currents and swell, as well as forces and torques effects from umbilical and working manipulator, even at presence 
of auto-stabilization systems which have limited accuracy. Displace of UV makes it difficult to automatically 
performing many manipulative operations. As a result, there arises necessity of using of additional automatic 
correction of program trajectory of motion of MM effector in process of its movement. Automatic correction should 
base on information about actual angular and linear displacements of UV from initial position and information about 
constantly varied MM configuration. Said correction should provide additional moving of MM effector. Herewith 
information about actual angular and linear displacement of UV obtained from high-precision navigation and 
gyroscopic systems.  

2. Description of underwater manipulation system and problem statement 

UV with fixed (in point О) n – degrees MM showed on Fig. 1. MM is able to move in forward hemisphere in 
front of UV. Each MM degree of freedom is actuated by corresponding actuator. In this figure: 1 - given (constant) 
desired spatial trajectory of MM effector movement; 2 – UV in origin position; 3 – underwater MM in origin 
position; 4 - UV in new position displaced from original position; 5 - new configuration of underwater MM which 
ensures accurate passing of MM effector along trajectory 1. Origins of absolute XYZ and body-fixed *** ZYХ  with 
UV right rectangular coordinate systems (SC) are combined in origin position 2 with UV centre of weights C, which 
coincides with centre of its size. Herewith axes of SC XYZ and *** ZYХ  are coincide in UV origin position 2. Axes 
of body-fixed SC *** ZYХ  are coinciding with UV axes of symmetry and axis *Y  is longitudinal axis of UV. 
Vector 3)( RtP sets current desired position of characteristic point А of MM effector in SC *** ZYХ , in which 

MM works. Vector 3RtP T  sets position of point А in SC ХYZ .  Vector 3)( RtPС sets offset of point С in SC 
ХYZ . Coordinates of point A in SC ХYZ  are determined by formulas [6]: 
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In this figure shown that when UV deviates from origin position during manipulation operation ,* xx ,* yy

zz* . Therefore, expression (1) cannot be used for determine trajectory of MM effector movement in SC *** ZYХ
. 

Shall assume that UV is equipped with high-accuracy navigation system, which allows to determine position of 
UV with accuracy of at least 0.01м [7-10]. Also UV is equipped with onboard gyroscopes which precisely measure 



1443 V.F. Filaretov and A. Yu. Konoplin  /  Procedia Engineering   100  ( 2015 )  1441 – 1449 

angles of roll, pitch and yaw of UV, special system of automatic stabilization of UV in space [3,4] which provides 
acceptable compensation of forces and torques effects to UV from working MM by UV propulsion thrusts. 

 

 

Fig. 1. UV and layout of SC. 

It is necessary to synthesize system, which allows to operate MM effector so that it always moving along 
trajectory continuously calculated in SC ХYZ  by formula (1). Wherein said system should automatically determine 
position of point A in SC *** ZYХ  based on measurement of current UV displacements (with SC *** ZYХ ) relative 
to its initial position. In this case, angular and linear UV displacements (in presence of above-mentioned system of 
UV automatic stabilization) should not exceed certain limits depending on parameters and kinematic scheme of 
MM. Namely, MM should be able to recoup arising UV displacements during tracking of point on trajectory. 

3. Construction of system of automatic correction of program motion trajectory of MM effector 

Shall assume that point C was displaced relatively to origin of SC ХYZ  and SC *** ZYХ  was arbitrarily turned 
in SC XYZ when MM is working. Onboard gyroscopes measure trim angle α formed by longitudinal axis *Y of UV 
and horizontal plane (see Fig. 2). Yaw angle β is formed by projection *'Y  of longitudinal axis *Y  on horizontal 
plane and direction of axis Y . Roll angle γ is formed by turning of UV around its longitudinal axis *Y  [11]. 
Wherein coordinate )(tx , )(ty  and )(tz of vector 3)( RtPС  which determined offset of point C in SC ХYZ  
(see Fig. 1) relatively to original position of UV are measured by precision navigation system. 

 

 

Fig. 2. Angle displacements of body-fixed SC. 
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To solve this problem it is necessary to find elements of vector tP  in SC *** ZYХ , knowing elements of 
vectors tP  and )(tPС  in SC ХYZ . Obviously, elements of vector tP  in SC ХYZ  can be obtained by 

subtracting of two vectors tPtP С  (see Fig. 1), and elements of this vector in SC *** ZYХ can be obtained using 
equation: 

tPtPRtP С
T ,                  (2) 

where 3x3RR - matrix of rotation of SC *** ZYХ  relative to ХYZ  [12], T – symbol of transposition.  
For definition of elements of matrix R UV rotation with SC *** ZYХ  must be presented as sequence of 

elementary rotations. Axes relative to which angles of corresponding rotations of SC *** ZYХ  and sequence of these 
rotations are measuring must be selected such that angles α and γ will be really measured by onboard gyroscope. 
This condition is carried out at following sequence of elementary rotations of CS *** ZYХ  (see Fig. 2): firstly SC 

*** ZYХ  rotates around axis Z at angle  (matrix of elementary rotation ,ZR  corresponds to it). After SC rotates 

around displaced axis '*Х  at angle (matrix of elementary rotation ,'*XR  corresponds to it). After SC rotates 

around axis *Y  at angle (matrix of elementary rotation ,*YR  corresponds to it). These rotation matrices have 
standard form [13]:  
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where sinS ; sinS ; cosC ; cosC ; cosC . With regard to formulas (3), matrix R for 
described sequence of rotations of SC *** ZYХ  with UV is given by formula: 

CCSCS
CCSSSCCCSSCS
CSSCSCSSSSCC

RRRR YXZ ,,', ** .             (4) 

It needs to be emphasized, that for determining elements of vector tP  in expression (2) only matrix (4) can be 
used. Because any matrix compiled by different sequence of elementary rotations can not be implemented using 
information from onboard gyroscopes. 

After substituting of transposed matrix R in equation (2) we have: 
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Generalized scheme of developed system of automatic correction of program motion trajectory of MM effector is 
shown on Fig. 3. Following notations introduced in Fig. 3: CS – control system of MM actuators; FPS – unit of 
forming of MM program signals; CMT - unit of correction of MM motion trajectory; NS – navigation system of 
UV; H - gyro unit; 3

000 ],,[)( RzyxtP T
o  - vector of initial position of MM effector in SC ХYZ ; IPK - unit of 

solving of inverse kinematics problem of MM; DPK - unit of solving of direct kinematics problem of MM; 
nT

n RtqtqtqtQ )](),...,(),([)( 21  - vector of desired values of generalized coordinates of MM; 
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nT
n RtqtqtqtQ )](),...,(),([)( 21  - vector of real values of generalized coordinates of MM; 
3],,[)( RzyxtP T

kkkk  - vector of real position of MM effector in SC ХYZ ; 
 

 

Fig. 3. Generalized scheme of developed system of automatic correction of program motion trajectory of MM effector which mounted on UV. 

4. Investigation of synthesized system 

We used PUMA MM for investigation of synthesized system. Kinematic scheme of said MM has three degrees 
of freedom and shown on Fig. 4. Following notations introduced in fig. 4: 1l 0.05 m, 32 ll  = 0.5 m – lengths of 
MM links; 1m  = 0.4 kg, 32 mm  3.9 kg – masses of these links. Assume that inaccurate stabilized in space base 
of MM changes its linear and angular coordinates by laws: ;)]2sin(03.0),5.1sin(04.0),2sin(05.0[)( T

С ttttP
)5.2sin(06.0 t ; )2cos(04.0 t ; )2cos(06.0 t . 

 

 

Fig. 4. Kinematic scheme of MM. 

MM links centers of size coincide with their centers of masses each of links has a cylindrical shape with base 
radius r  0.05 m and neutral buoyancy. Inertia tensors relatively to MM links centers of mass are diagonal, and

111  5* 410 , 
3322 11  3.3* 410  - elements of inertia tensor 1  of first link; 

1111 32 5* 310 , 

33223322 3322  8.4* 210  - elements of inertia tensors 2 and 3  of second and third links. 
For definition of forces and moments that arises in MM joints, we use algorithm for solving inverse dynamics 

problem of MM by formulas [3]: 
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in matrix i  lower index indicates number 

of element in respective vectors; 3, Rii angular velocity and angular acceleration of link i, respectively; iv  -
linear velocity of  MM link i; 3

00 , R  angular velocity and angular acceleration of base of MM, respectively; 

iAv  - linear velocity of center of size of MM link i; iv  -  linear velocity of MM link i; 0v  -  linear velocity of ММ 

base; UVP  - linear acceleration of MM base; Liv and piv  - longitudinal and transverse components of iv , 

respectively; Li  and pi  - longitudinal and transverse components of i , respectively; 1.01 kg, 
075.132 kg - added masses of fluid attached to relevant link; mir  linear acceleration of center of mass of 

link i; *
ip - vector defining position of joint i+1 relative to joint i; pir  - vector defining position of center of added 

mass of fluid i relative to joint i; *
ir  - vector defining position of center of mass of link relative to joint i ( *

1r

0.025 m, *
3

*
2 rr 0.25 m); T

ie )100(  vector directed along axis of joint i; 3, RMF ii  forces and moments 

which arises in joint i, respectively; 310*3.1  - viscosity of water; ** ,,, LipipiLi kkkk  - viscous friction coefficients; 

1*
3

*
333

*
2

*
222 LppLLppL kkkkkkkk ; AiK  - parameter that depends of  iAv  and angle i , 

22 sinAK , 33 sinAK ; 
111T  1* 410 , 

3322 11 TT  3* 510 , 
1111 32 TT  1.4* 310 , 

33223322 3322 TTTT  2.6* 210  - diagonal elements of inertia tensor of fluid masses attached to relevant MM 

links; 1i
iA  - direction cosine matrix for considered kinematic scheme of MM (see Fig. 4) 
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Shall assume that CS of electric actuators of every MM degree of freedom have devices of adaptive correction 
[14] which provide dynamic precision and invariability of actuators work quality to intercoupling effects between all 
MM degrees of freedom. In result transfer functions of corrected electric actuators of every MM degree of freedom 
are 
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at any lows of changes of MM generalized coordinates in process of MM movement. Where ,1
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a  Ra = 0.2 Ohm - ohmic resistance; k  = 0.02 Vs - back emf constant; mk  = 0.02 Nm/A - torque 

constant; J = 10-4 Kgm2 - moment of inertia of motor spindle and reductor; pi  = 100 - reductor transmission ratio.  
Mathematical modeling was performed for investigation of underwater MM work with synthesized CS (see Fig. 

3). MM effector moved in horizontal plane along trajectory described by equation const))(( ygz z  

1.0)7sin(3.0 yx , 

when )(ty  was formed by formula  

,
)))7cos(1.2(1(

)(
2y

tvy  

received by formula (1). Initial point of MM effector moving trajectory has coordinates: y0 = 0;  x0 = 0.1;  z0 = 1. 
Processes of changes of kx (t), ky (t), kz (t) and MM deviation from given trajectory n (t) with using of 

synthesized system are shown on Fig 5. Also results of modeling (deviation n (t)) without using of synthesized 
system are shown on Fig 6. From these figures it can be seen that synthesized CS allows 60 times increase accuracy 
of movement of underwater MM effector.  

Conclusion 

In this work method of synthesis of system of automatic correction of program trajectory of motion of MM 
installed on UV was proposed. Said CS allows performing manipulation operations with high accuracy at UV hang 
mode near object of work even at unintended displacements of UV from initial position. Using of synthesized 
system is assumed with systems of automatic stabilization of UV in desirable point of space. 

Automatic correction is based on information about actual angular and linear displacements of UV from initial 
position and information about constantly varied MM configuration. Implementation of synthesized system is not 
difficult. 
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yk (t) = scale· 0.1 m; xk(t) = scale· 0.1 m; zk(t) = scale· 0.1 m; εn(t) = scale · 0.002 m. 

Fig. 5. Processes of changes of yk(t), xk(t), zk(t) and εn(t)  in synthesized system. 

 
Fig. 6. Processes of changes of MM effector deviation εn(t). 
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