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Abstract 

The paper presents the research and the results obtained by the author concerning the kinetic modeling of the riser of the catalytic 
cracking unit. This study is structured in four parts. The first part presents the process description and the actual kinetic model 
existent in the special literature. The next part contains a detailed presentation of the two kinetic models developed by the author 
for the catalytic cracking riser reactor (four and three lump kinetic model).  The final part presents the comparison results of the 
three and four lump kinetic model. The results reveal the 4 lump kinetic model is more appropriate to represent the kinetic model 
of the catalytic cracking process, in the sense that a higher gasoline yield is thus obtained, whereas a lower quantity of coke is 
obtained. 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of DAAAM International Vienna. 

Keywords: kinetic model; fluid catalytic cracking; simulation 

1. Introduction 

The fluid catalytic cracking plant (FCC) ensures the conversion of the heavy fractions into a high octane number 
gasoline (the main element in the commercial gasoline) and olefin – rich gases (the feed stock in the petrochemical 
industry). The fluid catalytic cracking unit, consists of two pieces of equipment: the riser reactor, where almost the 
endothermic cracking reactions and coke deposition on the catalyst occur, and the regenerator reactor, where air is 
used to burn off the accumulated coke [1]. The regenerator is a complex system, assimilated to a reactor with perfect 
mixing, whose aim is the catalyst regeneration by the partial burning of the coke deposited on the catalyst. The riser 
reactor is the most important equipment in an FCC unit. The modeling of a riser reactor is very complex due to 
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many complex reactions occurred in the riser, coupled with mass transfer resistance, heat transfer resistance and 
deactivation kinetics. A complete model of the riser reactor should include all the important physical phenomena 
and detailed reaction kinetics [2].The first kinetic model, developed by Weekman, is based on three lumps and it 
may be applied to any type of feedstock [3]. Starting from this model, other kinetic models were developed, based 
on 4- lumps [4, 5, 6], 5 –lumps [7, 8], 6 –lumps [9], 10-lumps [10], 11-lumps [11], 19-lumps [12]. Table 1 presented 
the most important kinetic models developed in the last 30 years.  

          Table 1. Kinetic models for the catalytic cracking process. 
 

 
 

 
 
 
 
 
 
 
 
 

 

Nomenclature 

a contact ratio 
Ar riser cross section area 
cpi heat capacity of  ith lump  
cp,A heat capacity of the feedstock 
cp,abur heat capacity of the steam 
cp,cat heat capacity of the catalyst 
E volume fraction of the catalyst 
Ej reaction activation energy of jth reaction 
Hrj  enthalpy for jth reaction 
kj reaction velocity  constants of jth reaction 
kj

0  frequency factor or preexponential factor for jth reaction  
nc number of lump 
nr number of reaction 
rj reaction velocity of jth reaction 
R universal ideal gas constant 
Qmp feedstock flow 
Qabur steam flow 
Qrj   mass flow of the reacted compound 
tc catalyst residence time 
T0  reference temperature 
Tnod interfusion node temperature 
Uv riser vapours velocity 
Yi weight fraction of ith lump 
z spatial coordinate associated  to the riser  
ρv density vapour 

Number of lumps Year of 
appearance 

References 

3-lump 1968 [3] 

4 -lump 1989 [4, 5, 6] 

5 -lump 1991 [7,8] 

6- lump 1984 [9] 

10-lump 1970 [10] 

11-lump 1995 [11] 

19-lump 1994 [12] 
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2. Models of the riser 

The mathematical model of the riser contains the following components: the kinetic model, the material balance 
and the heat balance. 

2.1. Kinetic models 

Because the mathematical model of the riser will be used in a control system of the process, the author has 
chosen two simple, but robust models, which are the Weekman kinetic model based on 3 lumps and the Gianetto 
kinetic model based on four lumps. 

The Weekman kinetic model is based on three lumps as follows: feedstock – A, gasoline –B, gases and coke – C, 
depicted in figure 1a. The expressions of the chemical reactions are presented in table 2. 

 
Fig. 1. a) The Weekman kinetic model;  b) The Gianetto kinetic model. 

 
Table 2. The chemical reactions in the Weekman kinetic model. 

Reaction  Reaction velocity 

BA  2
AY1k1r  

CB  BYkr 22  

CA  2
33 AYkr  

 
The Gianetto kinetic model is based on four lumps as follows: feedstock – A, gasoline –B, gases – C and coke – 

D, illustrated in figure 1b. The expressions of the chemical reactions are presented in table 3.  
 
                                                          Table 3.The chemical reactions in the Gianetto kinetic model. 

Reaction Reaction velocity 

A B 2
11 AYkr  

A C 2
22 AYkr  

A D 2
33 AYkr  

B C BYkr 44  

B D BYkr 55  

 
The constants of the reaction velocity kj are obtained based on Arrhenius’ law, being dependent on the 

temperature in the riser and the reaction activation energy Ej. In order to determinate these constants, the following 
relations are used: 
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2.2. The material balance 

The riser is a plug flow tubular reactor under adiabatic conditions. In order to calculate the concentration profile 
for each lump throughout the riser height, a differential material balance can be applied along the riser, the following 
next equation thus being obtained [3]  
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zct

jYv

v
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                                                         (2) 

where j=3 in the case of the Weekman kinetic model and j=5 in the case of the Gianetto model. 
 

As shown in the following papers [13, 14], the riser is a system without inertia, in which the first term 

zc

jv

v t
Y1

 can be neglected. Under these conditions, the equation (1) becomes  
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The vapour velocity is expressed by the relation 

  
EA

Q
U

rv

mp
V ,                                                                                        (4) 

2.3. The heat balance 

The heat balance is also described by the next differential equations 
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where nc=3 in the case of  the Weekman kinetic model and nc=5  in the case of the Gianetto model. 
 The simplified assumptions taken into account for the heat balance are: 

- neglecting the heat contributions of the pseudo- components represented by gasoline and gases and coke, due 
to small flows and  heat capacities; 

- neglecting the heat effect resulted by the transformation of the gasoline into gases and coke, due to the reduced 
conversion of the gasoline into gases and coke and the values of the enthalpy of these reactions. 

The material and heat balance can be described by a system of differential equations with distributed parameters, 
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as presented in table 4. 
By solving the differential equation systems from table 4 we can obtain the temperature profile along the riser 

and the lump profile of the kinetic scheme along the riser. 
 
   Table 4. The kinetic models. 

The model System of differential equations The initial conditions 
 
 
 
 
3 lump kinetic model 
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4 lump kinetic model 

catp,caaburp,caburQAp,cAY

r1ΔH

dz

AdY

dz

rdT

BYkAY3k
vUdz

DdY

2
AY2kBY4k

vU

1

dz

CdY

BY)k4k(
2
AY1k

vU

1

dz

BdY

2
AY)3kk1k

vU

1

dz

AdY

5
21

5

2

 

 
 

nodTT

)(DY

CY
BY

)(AY

0

00

00

00

10

 

3. Comparison of kinetic models  

For the simulation of the two kinetic models presented in this paper, the author has developed two simulators 
using the SIMULINK. The SIMULINK is a MATLAB-based software package for the process’ simulation. For the 
simulations are used the constructive data from an industrial unit from Romania, presented in table 5, and the 
constants of the reaction velocity kj  and the reaction activation  energy Ej from literature[13, 15, 16, 17] , table 6. 

 
Table 5. The constructive data. 

 
 
 
 
 
 
 

Figure 2 depicts the evolution of the riser temperature profile. As shown, the riser temperature starts to increase 
and ensures a good conversion in the riser.  Figure 3 shows the evolution of the feedstock and the gasoline along the 

Constructive data Value 

The height riser 35 [m] 

The diameter riser 1-1.4 [m] 

The riser area 1.32 [m2] 
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riser. As shown, the feedstock and gasoline conversion is better in the case of the 4-lump kinetic model than in the 
case of the 3-lump kinetic model. The results reveal that the 4-lump kinetic model is more appropriate to represent 
the kinetic model of the catalytic cracking riser. The comparison values for both kinetic models are shown in table 7. 

                              Table 6. Kinetic parameter used for riser reactor modeling. 

Kinetic model Reaction cod Constants of reaction 
velocity 

Activation energy 
[kj/kmol] 

3 lump kinetic 
model A B 0.769 10.000 

B C 0.648 18.000 

A C 0.055 10.000 

 
4 lump kinetic 
model 

A B 12500 57359 

A C 1950 52754 

A D 16 31820 

B C 2650 65733 

B D 550 66570 

 

 
 

Fig. 2. The riser temperature profile for both kinetic models along the riser. 
 

 

 
 

Fig. 3. The gasoline and feedstock mass fraction profile for both kinetic models along the riser. 
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                                        Table  7. The comparison of values of the both kinetic models. 

The lumps  3-lump 4-lump Difference 
The temperature riser  525.13 517.01 8.12 
Gasoline 0.48 0.62 0.14 
Feedstock 0.280 0.177 0.103 

 

Conclusion 

The purpose of this paper is to draw a comparison between the two kinetics models (four and three-lump 
models) associated to the catalytic cracking riser. The results evidenced that the riser temperature start is increased 
in the case of the four-lump kinetic model, assuring a better conversion along the riser. The feedstock and gasoline 
conversion is better in the case of the 4-lump kinetic model than in the case of the 3-lump kinetic model. 
Consequently, the results reveal that the 4-lump kinetic model is more appropriate to represent the kinetic model of 
the catalytic cracking riser. 
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