
 Procedia Engineering 100 (2015) 278 – 282

1877-7058 © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of DAAAM International Vienna
doi: 10.1016/j.proeng.2015.01.368

ScienceDirect
Available online at www.sciencedirect.com

25th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM
2014

Software Architecture of Control System for Heterogeneous Group
of Mobile Robots

Kirsanov Kirill*
International Institute of New Educational Technologies, RSUH, Miusskaya sq. 6, Moscow, 125993, Russia

Abstract

This article describes the software architecture, which can significantly reduce development time, provide an effective process of
data exchange and control of mobile robots (or a group of mobile robots). This architecture is based on representation of a mobile
robot as the composition of mechatronic devices connected in a hierarchical graph of software interactions (also known as
middleware systems). This architecture provides high robustness, capacity and transmission frequency of control commands and
data. Also, successful results have been achieved in providing dynamic reconfiguration of system components without stopping
as well as automatic crash recovery (including complex interaction graphs) and auto-configuration.
© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of DAAAM International Vienna.

Keywords: Control system; mobile robotics; software architecture; software engineering; middleware

1. Introdution

For denotation of this article describes the software architecture, which can significantly reduce development
time, provide an effective process of data exchange and control of mobile robots (or a group of mobile robots). This
architecture is based on representation of a mobile robot as the composition of mechatronic devices connected in a
hierarchical graph of software interactions (also known as middleware systems).

This architecture provides high robustness, capacity and transmission frequency of control commands and data.
For example, during operation via Wi-Fi in point-to-point mode, control commands and sensor data transmission
frequencies of 450-500 Hz (Wi-Fi) were successfully provided.

* Corresponding author. Tel.: +8 903 745 46 77; fax: +8 903 745 46 77.

E-mail address: kkirsanov@gmail.com

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of DAAAM International Vienna

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2015.01.368&domain=pdf

279 Kirsanov Kirill / Procedia Engineering 100 (2015) 278 – 282

Also, successful results have been achieved in providing dynamic reconfiguration of system components without
stopping as well as automatic crash recovery (including complex interaction graphs) and auto-configuration. The
software designed for interaction of application software with network and providing unification of program-to-
program interactions in the context of heterogeneous system platforms [2], the term “Middleware” will be used.
Such software serves as a subsystem in larger software. And despite the fact that middleware is comprehensively
studied in modern Database, Internet and distributive calculation technologies, the studies have not reached the
adequate level as for robotics. Apparently, this is due to the fact that robot software had been quite simple until
recently (from the perspective of software engineering) and has not gone beyond the most primitive interactions
between objects and subjects of controlling process.

For the last few years, several teams were trying to develop heavy-duty software for programming of mobile
robots. Microsoft Robotics Developer Studio (MRDS) [5], Robotics Operating System (ROS) [6] may be referred to
as one of the most successful attempts to build such software. Their predecessors, such as Palyer Project
(http://playerstage.sourceforge.net), LAAS GenoM (https://softs.laas.fr/openrobots/wiki/genom), URBI (http://www.urbiforge.com),
etc., do not make progress any longer. ROS and MRDS are basically frameworks repeating the functionality of
operating systems (hardware abstraction, low-level device control, transmission of messages between processes and
package management) as applied to robotic tasks; they are based on a graph architecture, in which data processing is
performed within the nodes that can receive and transmit messages between each other.

Despite the use of graph architecture, realization of complex, multilink (more than 50) and multiuser systems in
them becomes difficult due to architectural limitations.

These frameworks may be nominally referred to as the “large”, i.e. including a number of components for SLAM
tasks solution, sensor calibration, image processing, etc. However, “small” robotic frameworks that only perform
transmission of messages between components also exist, e.g. Concurrency and Coordination Runtime (included in
MRDS).

2. Related work

At the development of middleware for building a distributed Virtual Laboratory [4], the following requirements
were formulated:

 Simultaneous functioning, control and surveillance (acquisition of telemetric information) by the network

consisting of hundreds of mechatronic components as well as shared remote access of multiple users to the
single mechatronic device.

 Delimitation of rights based on hierarchical representation of components

Additionally, due to heterogeneous nature of the network, the following limitations were applied to the developed

architecture:

 Multiplatformity. The possibility of functioning under various platforms and operating systems -
x86\arm\windows\Linux\android

 Minimalism. For functioning on Android devices and tiny single-board industrial computers, it is necessary
to minimize the size of software components

 Low barrier of entry. As the system is developed for use in educational institutions as well, it is necessary
to make it intelligible for people that do not have sufficient knowledge in the area of robotics and/or
programming.

The existing systems do not meet these demands to the full extent. In this regard, a custom architecture was

developed to meet them:

280 Kirsanov Kirill / Procedia Engineering 100 (2015) 278 – 282

Table 1. Comparation chart.

 MSRS ROS
LAAS, GenoM, Marie,
ORCA2, Player, iRobot OROCOS URBI Webots RoboJRE

Windows + + + + + + +

Linux + + + + + +

windows\ARM + +

linux\ARM + +

Development language *.NET

C, python

java С++, pyton С++ URBI C++ Java

Modeling + + + +

Interpreter - + +

Development environment + - - - + + -

Reconfiguration during operation partially + partially partially - partially partially

Communication protocol XML/ IP Own/IP Own/IP Own/IP Own/IP Own/IP Own/IP

Events + + + + + + +

Runtime environment .NET Java

Shared access partially partially - - - - -

Delimitation of rights - - - - - - -

Size >500mb >100mb >50mb >50mb >50mb >10mb >100mb

3. Proposed architecture

The multilevel architecture was developed, which includes: transport and logic level, distributed decentralized
name service, decentralized directory service, mechanisms of automatic configuration, network crash recovery,
caching and verification.

The minimal control object is represented by the mechatronic device, which has a pre-spawned integrating driver.
Integrating driver is software integrating the mechatronic device into the developed information system and
providing the above-mentioned functions.

The driver provides:

 Naming and identification scheme, e.g. the method for obtaining access to the device by its name. At that, the
name may contain IP address and port, user-defined text (for example, “engine”), or the entire hierarchy path (for
example, “University->laboratory1->Robottiono->Engines->3->current”.
 Transmission and receipt of commands. The developed architecture adopts ZeroMQ message exchange system

(http://zeromq.org/) that is the basis for multiplatformity, since this library is designed for a number of programming
languages and processor architectures thus allowing to organize data exchange in heterogeneous environment.
Besides 1:1 interaction modes commonly used for network interaction for Berkeley sockets, it provides 1:n and n:1
modes, including those with delivery control, which is extremely convenient for robotic tasks, e.g. data acquisition
from multiple sensors.
 Control commands and data are transmitted in JSON format. This is a text data transmission format (e.g.

presentable as ASCII text) allowing manual formation of the control commands without using specific libraries, as it
is needed by other similar systems. Also, there is a possibility to supplement the transmitted data with additional
information without modifying the receiving software.

281 Kirsanov Kirill / Procedia Engineering 100 (2015) 278 – 282

Interaction with other drivers.
Within the scope of this architecture, the mobile robot is represented as the composition of one or several

mechatronic devices and their drivers. Each driver on the on-board computer is basically an individual computing
process, and the cooperation of these processes must be synchronized and organized. Furthermore, within the scope
of the Virtual Laboratory it is necessary to provide cooperation of these processes under different computing
platforms. In order to ensure cooperation under such conditions, the following approaches are used:

 Each command or piece of sensor data receives a time tag at passing each driver; this allows to synchronize
operation accurately and consider time delays as well as time difference between several laboratories

 Each driver has its own Name Service keeping information about adjacent drivers (with regard to network
topology). This service periodically scans the local network and searches for similar services. After finding, it
exchanges all available information with the found service by means of the algorithm related to Distributed Hash
Tables (DHT). This is what brings in the quality of decentralization. For example, a robotic system debugged
within the laboratory without changes may be disconnected from it, and its normal functioning will not be
interrupted in such case.

Fig. 1. Sequence diagram of messaging.

The fig.1 figure illustrates a simple interaction in the proposed system: Two mechatronic devices (rc1,rc2) areregistrating on Name service (ns)
and controlled by Control system (cs)

Conclusion

This architecture provides high robustness, capacity and transmission frequency of control commands and data.
For example, during operation via Wi-Fi in point-to-point mode with Festo Robotino[4], control commands and
sensor data transmission frequencies of 450-500 Hz (Wi-Fi) were successfully provided.

Also, successful results have been achieved in providing dynamic reconfiguration of system components without
stopping as well as automatic crash recovery (including complex interaction graphs) and auto-configuration.
The most significant distinctions from the existing systems are:

282 Kirsanov Kirill / Procedia Engineering 100 (2015) 278 – 282

 The use of text data exchange format, which allows to simplify debugging and organize interaction with system
without using additional libraries, and that’s essential for integration purposes. The text format itself (json) is
simple enough to be realized (parsed) on low-performance processors, including AVR (Arduiono)

 Decentralization and auto-configuration – the interaction graph is automatically restored after interruption of
communications, even in case of minor changes in network topology

 Access delimitation system (based on LDAP) allowing for management of user group access rights.

Further research

It appears interesting to increase the system’s reliability by means of Hindley-Milner algorithm [7] for output and
control of types, because untyped JSON is used for interaction, and each component of the system decomposes it
independently, orienting on defaults.

The other direction is addition of support of Turing-complete protocols [3]. This, however, is due to a set of
difficulties related [8] to the necessity of binding to a certain programming language.

References

[1] Pieter Hintjens "ZeroMQ: Messaging for Many Applications" O`Relly march 2013 495pp.
[2] Wolfgang Emmerich, Mikio Aoyama, Joe Sventek The impact of research on the development of middleware technology // ACM

Transactions on Software Engineering and Methodology. — N. Y.: ACM, 2008. — Т. 17. — № 4. — С. 19-48.
[3] Kirsanov, Kirill. "Development and debugging of information measurement and control systems for mobile robots with python dynamic

language." Annals of DAAAM& proceedings (2009).
[4] V.P.Andreev, K.B.Kirsanov, P.F.Pletenev, Yu.V.Poduraev,V.E. Pryanichnikov, E.A.Prysev Virtual Spatially-Distributed Scientific and

Educational Laboratory for Remote Control of Mechatronic Devices through the Internet 25th DAAAM International Symposium on
Intelligent Manufacturing and Automation, 2014. Procedia Engineering ISSN 1877-7058. IN PRESS.

[5] http://www.microsoft.com/robotics/
[6] http://www.ros.org/
[7] R. Milner A theory of type polymorphism in programming Journal of Computer and System Sciences Volume 17, Issue 3, December 1978,

Pages 348–375.
[8] Andreev V.P. Scientific and Educational Spatially-Distributed Virtual Robotics Laboratory / Andreev V.P., Kirsanov K.B., Pryanichnikov

V.E. // Extreme robotics. Proceeding of the International Scientific and Technological Conference. – Saint- Petersburg: “Politechnika-
service”, 2014. - P.239 – 244.

