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Abstract 

The paper is devoted to the problem of fault detection in technical systems described by nonlinear dynamical models containing 
non-smooth nonlinearities. So-called “model-free” or “data-driven” method is used to solve the problem. The feature of this 
method is that parameters of the system under consideration may be unknown. The algebra of functions is used to solve the 
problem under consideration. 
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1. Introduction 

The problem of fault diagnosis in technical systems was extensively investigated for the past 25 years; see, e.g., 
the papers [6, 7, 8, 15-17], the books [2, 3, 9-11]. Many problems have been studied and solved: different methods 

fuzzy logic, descriptor systems, different classes of nonlinear systems, and so on. Many practical examples were 
considered; see, for example, books devoted to industrial and mechatronic systems [3, 10].There exists a promising 
method of fault diagnosis in technical systems described by linear and nonlinear models known as “model-free” or 
“data-driven” method (see, for example, the papers [1, 4, 5, 13, 14]). The feature of this method is that parameters of 
the system under consideration may be unknown. Therefore, this method may be named as the non-parametric one 
as well.  
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To make a decision about faults, the method developed in [1, 4, 13, 14] is based on computation of the kernel of 
the matrix generated by measurements and is of high computational complexity. In addition, this method does not 
take into consideration different disturbances which may result in erroneous decisions about faults. Besides, the 
above papers consider the systems described by linear or polynomial models.  

In contrast to this, the present paper suggests the way developing the model-free method for technical systems 
described by nonlinear dynamic models with non-smooth nonlinearities. It is well-known that actual technical 
systems contain such typical non-smooth nonlinearities as saturation, Coulomb friction, backlash and hysteresis. 
Therefore, the methods of fault diagnosis in the systems with such types of nonlinearities are necessary for practical 
applications. The method suggested in the paper is applicable not only for such types but for other ones. Besides, 
another method for decision making is suggested in this paper. In some cases it allows to decrease complexity of 
calculations and to take into account the disturbances in comparison with the method considered in [1, 4, 13, 14].  

Consider a class of technical systems described by nonlinear models 

))(),(()1( tutxftx ,            ))(()( txhty ,                                                                                                  (1) 

where ,nRXx  ,mRUu  lRYy  are the vectors of state, control and output; f  и h  are nonlinear 
functions, the function f  may be non-smooth. To implement the data-driven method, make a coordinates 
transformations  
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based on some functions )1( , )2( ,…, )(n , and  such that in new coordinates the system is described by the 
model without feedbacks:  
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for some functions )1(
*f , )2(

*f ,…, )(
*

nf , and *h . To find out a possibility to make such a transformation, special 
mathematical techniques so-called the algebra of functions will be used. We recall briefly the definitions and 
concepts to be used in this paper, see also [12].  

2. Algebra of functions 

Vector functions are elements of this algebra, which includes some binary relations, operations and operator.  
1. Partial preordering relation : for any functions SX:  and WX:  denote  if  for some 

function WS: , i.e. )())(( xx  for all Xx  where S and W are some sets. 
2. Equivalence relation : if  and , then  and  are equivalent denoted . 
3. Operations  and :  

   = max(  | , ),  
 = min(  | , ). 

Clearly, the operation  gives a maximal bottom of the functions  and  while the operation  gives their minimal 
top.  

4. Binary relation : ),( , if equality )),(()),(( uxuxf  holds for some function WUS:  and 
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all UXux ),( . 
5. Operator m: )(m  is a function satisfying the conditions  

))(,( m ,     ),(       )(m .                                                         

The relations  and , operations and operator have the following main properties:  
1.   )( ; 
2.  )(       )( m, ; 
3.  if , then )()( mm . 

3. Main theoretical result 

Theorem below stands the condition for the coordinate transformation allowing to obtain the model (3) without 
feedback. 

Theorem. System (1) can be transformed into the form (3) if and only if 

consthhhh )...))(...((( mmm                                                                                                             (4) 

where the operator m  is used n  times. 
Proof. Necessity. Assume that )1( , )2( ,…, )(n , and  are functions with necessary property, that is 

equations (3) are valid for the transformed coordinates (2). Replace the variable )1(1* tx  in the first equation in (3) 
by ))1(()1( tx  and )(ty  by ))(( txh :  

))()),((())1(( )1(
*

)1( tutxhftx . 

By the definition of relation , this equality is equivalent to the inclusion ),( )1(h  and the inequality 
)()1( hm . Analogously, the second equation in (3) gives the inequality  

)...( )1()1()( ii hm ,    ni ,...,3,2 . 

By the properties of operation  and operator m , one obtains ))(()( )1()2( hhh mmm  for 2i  and 

)))(()(()( )1()2()3( hhhhh mmmmm  for 3i . 
Since )(hhh m , then hh ()( mm ))(hm  and ))(())(()( hhhhh mmmmm , that gives  

)))((()3( hhh mmm . 

By analogy one obtains 

)...))(...((()( hhhn mmm                                                                                                                       (5) 

(the operator m  is used n  times).  
The equality ))(()(* tyty  with ))(()( *** txhty n  and ))(()( txhty  can be rewritten in the form  

)))((()))((( )(
* txhtxh n . 
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Taking into account the relation (5) for the function )(n , one obtains  

hhhhhh )...)))(...((((* mmm .                                                                                                        (6) 

Since  

)...))(...((()...)))(...((((* hhhhhhh mmmmmm                                                                            (7) 

by the definition of relation , it follows from (6) and (7) and the property of operation  that  

hhhhhhhh )...))(...((()...)))(...((((* mmmmmm . 

Finally, since consthhhh )...)))(...((((* mmm , then consthhhh )...))(...((( mmm , that is (4) is true.  
Sufficiency. Different functions )1( , )2( ,…, )(n  can be obtained based on the condition (4), therefore one 

can obtain different feedback-free models. Consider simpler model than the one described by (3): 
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Set )()1( hm , )()1(
1* xx , )( )1()( ii hm , )()(

* xx i
i , ni ,..,3,2 . By the definition of operator 

m , one has ))(,( m  for arbitrary function , therefore ))(,( hh m  and ))(,( )1()1( ii hh m , that 
gives after appropriate replacements ),( )1(h  and  

),( )()1( iih , ni ,..,3,2 . 

This means by the definition of relation  that (8) is true for some functions )1(
*f , )2(

*f ,…, )(
*

nf . By the definition 
of functions )1( , )2( ,…, )(n , one obtains )...))(...((()( hhhn mmm  (the operator m  is used n  times). It 
follows from this relation and the condition (4) that there exit the functions *h  and  such that 

)))((()))((( )(
* txhtxh n , or ))(())(()( *** tytxhty n . The theorem has been proved.  

It can be shown that theorem is true for continuous-time system as well. 
Notice that the output *y  is found in the form ))(),...,(),(()( *2*1*** txtxtxhty n . To simplify the transformed 

system, it is recommended to choose the function )(i , ni ,..,3,2 , with minimal number of components such that 
)()2()1( ... i )...))(...((( hhh mmm , where )()1( hm  (the operator m  is used i  times). 

Otherwise, if we set )...))(...((()( hhhi mmm , the dimension of the transformed system increases. Note that 
such a choice of the functions )(i , ni ,..,3,2 , yields a presentation of the initial system in the form (3). 

Thus, if the condition (4) holds, the initial system can be transformed into the form (3). To apply the main ideas 
of the model-free method, transform equations (3) into the single equation using several time shifts and substitutions 

of ))(),(),(( 1*
)(

* tutxtyf i
i  from (8) for )1(1* tx i , 1,...,2,1 ni . 

4. Computational relations 

Based on time shifts and substitutions, one can transform equations (3) into the single equation as follows:  
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                                         .  .  . 
))(),1(),(),...,1(()( ** tuntutyntyFntx N  

for some function *F . As a result, the expression (9) takes the form 

)))(),1(),(),...,1(()( *** tuntutyntyFnty ,                                                                                     (10) 

where **** FhF .  
Assume for simplicity that the functions f  and h  are polynomials and the function f  contains the unknown 

parameters . Assuming that )1( , )2( ,…, )(n  and  are polynomials as well, one obtains that )1(
*f , )2(

*f ,…, 
)(

*
nf  and *h  are polynomials also. This means that the right-hand side of (10) can be written in the form  
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where )(1 , )(2 ,…, )(v  are some expressions containing the parameter , ),...,1,,(1 tntuyP , 
),...,1,,(2 tntuyP ,…, ),...,1,,( tntuyPv  are polynomials containing vectors of control and output with 

arguments from 1nt  till t . Based on (11), write down the expression for )(* nty  for several time instants: 
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The expression (12) is a starting point to make a decision about faults in the initial system (1). Note that the 
matrices )(* kY  and nV  in (12) contain the known measurements while the matrix ))()()(( 21 v
contains the unknown parameter . 

5. Decision making 

Consider rows of the matrix nV  in (12) as a set of the basis vectors of some hyperplane denoted by )( nVL . If the 
vector )(* nY  belongs to this hyperplane, one concludes that the system is healthy. In the presence of disturbances, 
this vector does not need to belong to the hyperplane )( nVL  even in the faulty-free case; the value of distance 
between the vector )(* nY  and the hyperplane )( nVL  can be used for decision making on the basis of some 
threshold.  

To calculate the distance between the vector )(* nY  and the hyperplane )( nVL , the following decomposition of 
the matrix nV  is used: 

BAVn ,                                                                                                                                                   (13) 

where A  and B  are nonsingular matrices, 0I . Such a decomposition can be obtained on the basis of 
singular value decomposition of the matrix nV  suggested for the purpose of diagnosis in [6]. 
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Suppose that )()(* nVnY L , i.e. the vector )(* nY  is a linear combination of the matrix nV  rows. Therefore the 
equation nCVnY )(* , or BACnY )(*  holds for some matrix C . Compute the vector 1

* )( BnYY  and 
rewrite the previous expression in the form ACY . It follows from this expression that the vector Y  is a linear 
combination of the matrix 0I  rows. This matrix allows concluding that the last element of the vector 

1
* )( BnYY  is equal to zero in the faulty-free case. Denoting this element by LY , one can consider the equality 
0LY  as a parity relation. Therefore, to generate a residual, the expression LYnr )(  can be used.                                   

It follows from the structure of the matrix 0I  that for the arbitrary vector )(* nY  the row C  exists such 
that the difference ACBnY 1

* )(  is a vector with all zero components but the last one. This means that the 
value LYnr )(  can be considered as a distance between the vector )(* nY  and the hyperplane )( nVL . 

The decision making rule is as follows: if 0)(nr , the system is health, otherwise the fault has occurred. In the 
presence of disturbances, the residual )(nr  should be compared with the threshold has to be determined. Notice that 
according to (12), this rule is not based on the parameters of the system, they may be unknown.  

Conclusion 

The paper is devoted to the problem of fault detection in technical systems described by nonlinear models with 
non-smooth nonlinearities. So-called model-free method to solve this problem is considered. The feature of this 
method is that parameters of the system under consideration may be unknown. The suggested solution is based on 
singular value decomposition and allows to decrease complexity of calculations in comparison with the method 
considered in [1, 4, 13, 14] in some cases.  

The future plan of researches is: (1) comparison between the algebraic and geometric approaches; (2) 
development of procedure to design the threshold; (3) establishment of conditions under which fault isolation is 
possible.  
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