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Abstract 

The paper is devoted to the problem of fault accommodation in nonlinear dynamic systems related to constructing the control law 
which provides full decoupling with respect to fault effects. Existing conditions are formulated and calculating relations are given 
for the control law. The logic-dynamic approach is used to solve the problem whose features are consideration of the systems 
with non-smooth nonlinearities and the use of relatively simple linear methods which may be supported by existing programming 
systems, e.g. MatLab. 
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1. Introduction 

An increasing demand on reliability and safety for critical purpose control systems calls for the use of fault 
tolerant control (FTC) techniques. The goal of the FTC is to determine such a control law that preserves the main 
performances of the system in the faulty case while the minor performances may degrade. There are two principle 
approaches to the FTC [1, 4, 6, 7, 8, 11]. The first of them involves adaptive control techniques and assumes on-line 
fault detection and estimation followed by control law accommodation. The second approach is focused on such a 
control law determination which provides full decoupling with respect to fault effects in output space of the system. 
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In contrast to the first approach, the second approach does not need in fault estimation. Therefore, such approach 
looks reasonable if on-line fault estimation is problematic. 

The problem of fault accommodation in dynamic systems was solved in [5, 9] based on differential geometry 
and algebra of functions and demands complex analytical calculations. In this paper, we use the logic-dynamic 
approach proposed in [2, 10]. The main idea of this approach is replacing the nonlinear system under consideration 
by certain linear one, solving the problem for this linear system involving linear methods and, finally, taking into 
account nonlinear terms to correct the obtained solution. The main features of the proposed approach are: (1) it 
considers the systems with non-smooth nonlinearities in dynamics, (2) it involves known linear methods that results 
in possibility to solve the fault accommodation problem by existing programming systems without using the 
symbolic software, (3) it can be applied both to discrete-time and continuous-time systems.  

The logic-dynamic approach to solve the fault accommodation problem was considered in [3]. The present paper 
takes more sophisticate analysis that allows to obtain simpler solution (in particular, static solution) and extend a 
class of systems which the fault accommodation problem can be solved for. 

To apply the logic-dynamic approach and to take into account the faults, it is assumed that the initial system  
is described by the following model 

 

)()(          ),(
))(),((

))(),((
)()()1(

11
kHxkykDd

kukxA

kukxA
CkGukFxkx

pp
,                                           (1) 

where F, G and H are the matrices of appropriate dimensions, describing a linear part of the system; D is known 
constant matrix, d is a vector, describing the faults: if a fault occurs, )(kd  becomes an unknown function of time, 
otherwise 0)(kd ; C is pn  constant matrix; p,...,1  are nonlinear functions which maybe non-smooth; 

pAA ,...,1  are row matrices.  
It is assumed that the fault detection and isolation procedure is performed by known methods (see e.g. [1]). If a 

fault occurs, )(kd  becomes an unknown function, and a solution of the control problem based on the model (1) 
becomes impossible. To overcome this difficulty, one suggests to obtain the vector u(t) according to the relation  

)),(),(),(()( *0 kukykxgku                                                                                                                             (2) 

where g is the vector function to be determined, )(* ku  is a new control vector, ,00
nRx

 
nn0 , is a state vector 

of the system 0  described by the model  
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where 00000 ,,,, ACJGF  are the matrices to be determined. 
Assume that the control (2) exists and the fault occurred and was detected, then a solution of the control problem 

is performed on the basis of the additional system *  described by the model  

)),(),(()()()1( ********* kukxACkuGkxFkx                                                                                      (4) 

corresponding in a definite sense to the initial model (1); here **** ,,, ACGF  are the matrices to be determined. Note 
that (4) does not contain the unknown vector )(kd . Therefore, fault accommodation effect may be achieved by 
using the model (4) for control determination.  

The problem under consideration is to determine the existing condition for the control (2) and to obtain the 
function g and the matrices, describing the systems 0  and * . 
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2. Problem solution 

2.1. Auxiliary system  design  

Consider at first for simplicity the case when the initial system contains the single type of nonlinearity, i.e. p = 1. 
To solve the problem, introduce the auxiliary system  of maximal dimension described by the model  

)),(,)(
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 (5) 

where the state vector x′ satisfies the condition 

)()( kxkx                                                                                                                                                     (6) 

for some matrix . The model (5) does not depend on the unknown vector )(kd  and can be used to design the 
observer for estimating the initial system state vector when the fault occurred. In the paper, this system will be used 
to construct the systems 0  and *  and the control law (2). 

The logic-dynamic approach assumes [2, 10] that on the first and second steps, the linear part of the system  is 
considered and the linear part of the system  is constructed by linear methods with some additional restriction. It 
is known [10] that the following relationships are between matrices, describing the systems  and :  

HJFF ,        GG ,          0D ,                                                                                           (7) 

CC ,                    HAA .                                                                                                                  (8) 

The last expression in (8) is an additional restriction on the matrix  which is taken into account on the second 
step. The second equality in (8) holds if and only if rows of the matrix A are linearly dependent on rows of the 
matrices  and H that is equivalent to the condition  

A
HrankHrank .

                                                                                                                                     

(9) 

If the model (1) contains several nonlinearities, the matrix A in (8) and (9) is replaced by iA , i = 1,...,p.  

To take into account the condition 0D , introduce the matrix 0D  of maximal rank such that 00DD . Then 
0ND  for some matrix N. Rewrite the first equation in (7) with 0ND  by separating known matrices from 

the unknown ones:  
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Let )( ZWV  be a solution of (10), therefore the relation VFW  is true that is rows of the matrix V are 
linearly dependent on the matrix Z rows. To take into account the last equality, one has to remove from the matrix 

)( ZWV  all rows where the corresponding row of the matrix V is independent of the rows of Z. Algorithm 
below finds the matrix satisfying the condition VFW . Denote the i-th row of the matrix W by iW  and the 
number of rows of W by w.  
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Algorithm.

 

 
Step 1. Set i := 1. 

Step 2. If 
iW

VrankVrank )( , go to Step 4. 

Step 3. Remove the i-th row from the matrix )( ZWV , denote the obtained matrix by )( ZWV , set 
)(:)( ZWVZWV , 1: ww  and go to Step 1. 

Step 4. Set 1: ii . If wi , go to Step 2. 
Step 5. Find in the matrix Z′ the maximal number of linearly independent rows, remove the rest rows from this 

matrix and remove the corresponding rows of the matrices V′ and W′. Denote the matrix obtained by 
)( 000 ZWV . 

It follows from (14) that 0ZJ  and 00DV ; besides the matrix F′ can be found from the algebraic 
equation 00 WVF . 

To finish the second step of the logic-dynamic approach, check whether or not the matrix  satisfies the 
condition (9). If not, the system (5) invariant with respect to the unknown function d(t) does not exist and fault 
accommodation problem is not solvable. Otherwise, Step 3 of the logic-dynamic approach can be performed. To do 
this, one can find the matrix A′ from the algebraic equation (8). Suppose that the matrix  satisfies the condition 
(9); set GG  and CC  according to (7) and (8), respectively. Thus, the system Σ′ described by (5) has been 
constructed. To simplify the references, denote this system by  

)).(),(),(()1( kukykxfkx                                                                                                                      (11) 

To simplify a solution, assume that when some component of the function f  contains the output y , then it 
contains the control u . 

2.2. Control law design 

Find in the function ),,( uyxf  all terms of the form ),,( uyxj , ,,,1 rj , containing the output y  and the 
control u; note that by the above assumption, such terms exist. It is assumed that each term contains minimal 
number of variables; note that in some cases the equality ),,(),,( uyxfuyx ij  is possible. Denote 

T
1 ),,( r  and assume that surank )/(  for some integer s for all yx , , and u except on a set of 

measure zero. Set 
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It is assumed that the function ),,( uyx  contains m′ components of the control vector )(ku . Clearly, sm  
and sr  by definition. Consider four cases; assume that the function  does not contain functionally dependent 
components.  

1. .srm  In this case equations (12) are solvable (generically) uniquely for some m′ components of the 
control vector; without loss of generality assume that they are the first m′ components :,,1 muu   

),,,( *uyxgu ii        ,,,1 mi                                                                                                                   (13) 

ig  is some function. One can set 

,: *ii uu         mmi ,,1 , 
 
                                                                                                                     (14) 

for the rest components. 
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2. .srm  In this case the function γ contains rm  redundant components of control; without loss of 
generality assume that they are the last rm  components .,,1 mr uu  One can set  

,: *ii uu          ,,,1 mri                              

for these and the rest components and solve equations (12) in the form (13) for .,,1 ri  
3. .srm  We need to find the matrix P with s rows such that 

s
u

Prank  

for all yx , , and u except on a set of measure zero. The matrix P collects s functionally independent components 
from all components of the function ; redundant components of the vector u (they exist when rm ) are now in 
the function P . Set ,*ii uu  for msi ,,1 , then the equation Pu*  is solvable uniquely for si ,,1  in 
the form (13). 

4. .mr  In this case equations (12) are incompatible; to solve the problem, one needs to use the matrix P 
collecting s functionally independent components from all components of the function  by analogy with the third 
case. 

To check a quality of the obtained solution (if it exists), replace in (11) the first m′ components of the vector u by 
the expressions ),,( *uyxgi  according to (13) (s components are used in cases 3 and 4). Note that such a 
replacement corresponds to the feedback for fault accommodation. Denote the function f  after the replacement by 

*f . If the function *f  does not contain the vector y, then the control in the form (13) and (14) has been constructed. 
Otherwise, one has to analyze the function *f  by analogy with f  and correct the control law g . Consider for 
simplicity the case when *f  does not contain the vector y. 

2.3. Systems 0  and *  design  

To construct the system 0 , the vector u in the function f  is replaced by *u  according to (13) and (14) and the 
components of the vector x′ are formally replaced by the components of the vector 0x . In some cases the dimension 
of the obtained system may be reduced, see for details [5]. Recall that in the static case the system 0  is absent.  

To construct the system * , the vector u in the function f  is replaced by *u  according to (13) and (14) 
analogously to the system 0 . Note that such a replacement results in the equations, containing the components of 
the output vector in the form )(xhy jj  for some function jh . Replacing jy  by )(xh j  and then x′ by *x , one 
obtains the system * .  

3. Static solution 

If the function  (or P ) does not contain the components of the state vector x′, then the control law g is free 
from x′ as well and (2) takes the form ),( *uygu . This corresponds to the static solution where the system 0  is 
absent. The sufficient condition of such a solution is given by the following proposition. 

Proposition. If 
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the fault accommodation problem has the static solution. 
Proof. Clearly, (15) is equivalent to existence of the nontrivial solution of the equation 

0
0

HZ FD .                                                                                                                                                 (17) 

Let the matrix )( JNZ  represents all linearly independent solution of (17). Set 0: ND , then HJF . 
Next, if (16) holds, then HAA  for some matrix A′. The last two equations allow constructing the system  in 
the form 

)),(),(()()()1( kukyACkyJkuGkx  

where CC  and GG . Since the right-hand side of this equation does not contain the state vector x′, then 
the function  (or P ) does not contain x′ as well, and the fault accommodation problem has the static solution. 

4. Comparison with known approach 

Remind that another approach to solve the fault accommodation problem was considered in [3, 5, 9]. The main 
steps of this approach are as follows. The system  is designed and the following equations  
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                                                                                                                                          (18) 

are considered. The problem of solvability of these equations for the control u is analyzed; when srm , the 
equation fPu*  similar to Pu*  is considered. The results of analysis are represented in the form (13) and 
(14). The system 0  in [3, 5, 9] coincides with ; the system *  is found in the form of composition of the two 
subsystems, the first has the simplest form 
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The second subsystem is autonomous; the special procedure to design this subsystem was developed in [3, 5, 9]. 
Comparing similar equations (12) and (18), one concludes that each equation in (12) contains minimal number of 
variables that gives a possibility to obtain the static solution (if it exists). Unlike, the right hand sides of equations in 
(18) coincides with that describing the system . The approach suggested in [3, 5, 9] cannot yield the static 
solution (even if it exists). 

The main disadvantage of (18) is redundant variables which may result in insolvability of (18) for the 
components of the control vector u; consider the example. Let r = 1 and  

)())(),(),(()1( 2112111 uusignxyukukykxfkx .                                                                              (20)  

Clearly, the equation )( 211211* uusignxyuu  is unsolvable both for 1u  or 2u  If however one takes in (20) 
minimal number of variables, this gives the function 211* yuu  and the static solution 21*1 / yuu . Note that 
replacement of 1u  by 21* / yu  in (20) yields  
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)/())(),(),(()1( 221*11*11 uyusignxukukykxfkx                                                                                 

containing 2y  and the control 2u . This means that there is need to repeat the correction of the control. Setting 
221*2 /: uyuu , one obtains the equation solvable for 2u . Therefore the approach suggested in [3, 5, 9] does not 

yield the solution in comparison with the present paper. Thus, the suggested approach allows extending a class of 
system which the fault accommodation problem can be solved for. Besides, it allows obtaining simpler solution 
generally. 

5. Implementation and future researches 

The systems 0 , *  and the control law (2) can be used to achieve the fault accommodation effect by the 
following way. Assume that the task consists in finding a control transferring the faulty system  described by (1) 
from the state )( 1

)1( kxx  to )( 2
)2( kxx . To solve this task, find the states )()( 1*1* kxkx  and 

)()( 2*2* kxkx , corresponding to the states )1(x  and )2(x . Appropriate control )(* ku , ,21 kkk  solving this 
task for the system *  is found, and then the expression (2) is used to find a control )(ku , ,21 kkk  solving the 
task for the initial system with a range of accuracy given by matrix * . 

It is known that in some cases the auxiliary system (5) invariant with respect to the unknown function d(k) does 
not exist. This means that there is no way to provide full decoupling with respect to faults effects, therefore the fault 
accommodation problem is not solvable. The plan of future researches is to overcome this difficulty by developing 
the method to find optimal partial decoupling minimizing the faults effects. 

 

Conclusion 

In the paper, the fault accommodation problem in the systems, described by model (1), has been considered. To 
solve this problem, the logic-dynamic approach has been used. The feature of this approach is that it allows to avoid 
complex analytical calculations and use the standard mathematical packages (e.g., Mathlab) to perform the 
necessary linear operations. Besides, it can be applied both to discrete-time and continuous-time systems. Existing 
conditions have been formulated and calculating relations have been given for the control law guaranteeing full 
decoupling with respect to faults effects. The future plan is developing the method to find optimal partial decoupling 
with respect to faults effects when full decoupling is impossible.  
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