
 Procedia Engineering 69 (2014) 1509 – 1517

Available online at www.sciencedirect.com

1877-7058 © 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of DAAAM International Vienna
doi: 10.1016/j.proeng.2014.03.148

ScienceDirect

24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013

Operations on Quantum Physical Artificial Neural Structures
Florian Neukart*, Sorin-Aurel Morar

University of Brasov, B-dul Eroilor nr.29, 500036 Brasov, Romania

Abstract

The advances that have been achieved in quantum computer science to date, slowly but steadily find their way into the field of
artificial intelligence. Specifically the computational capacity given by quantum parallelism, resulting from the quantum linear
superposition of quantum physical systems, as well as the entanglement of quantum bits seem to be promising for the
implementation of quantum artificial neural networks. Within this elaboration, the required information processing from bit-level
up to the computational neuroscience-level is explained in detail, based on the combined research in the fields of quantum
physics and artificial neural systems.
© 2014 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of DAAAM International Vienna.

Keywords: Quantum Computer Science; Computational Neuroscience;

1. Introduction

From [1], where most of the introductory information has been taken from, a possible implementation of a
quantum artificial neural network calculation, beginning with a superposition of all possible weight vectors has been
proposed. The superposed weight vectors would allow classifying all training examples with respect to every weight
vector at once. In the proposal, a performance register is used to store the number of correctly classified training
examples and updated continuously. The update of the performance register with respect to each configuration of
the QANN creates an entanglement of and . Thus the oracle is

(1)

where represents the number of training examples (inputs) and the number of output neurons. As it may occur
that either no configuration of a network within the superposition is able to classify all training examples correctly

* Corresponding author. Tel.: +49 171 12 199 12.
E-mail address: florian.neukart@edu.campus02.at

© 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of DAAAM International Vienna

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2014.03.148&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2014.03.148&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

1510 Florian Neukart and Sorin-Aurel Morar / Procedia Engineering 69 (2014) 1509 – 1517

(and therefore every vector has an equal chance of being measured) or the amount of time required for finding a
vector is increasing with the number of bits in the weight vector and thus exponential complexity:

For avoiding the first case, Ventura and Ricks suggest modifying the search oracle to
 (3)

where is the percentage of correctly classified training examples. With respect to quantum artificial neural
networks, this means that any possible configuration of the quantum ANN is kept within the quantum linear
superposition. However, there is still the problem of measurement, as measurement needs to be done when
probability of receiving a desired result is high. Let assume a quantum register consisting of 64 Qbits each in the
already known state

 (4)

then every possible state, or every value (double) that can be expressed with these 64 bits may be measured, but
with the same probability distribution, so any of these double values would exist in this quantum register at once.
This is where quantum entanglement comes into play, as each possible weight vector is entangled with a slot in the
performance register due to processing. Therefore, a measurement on the performance register when the probability
of measuring the desired output is close to 1 will also reveal the desired overall weight vector (ANN configuration)
due to the resulting loss of coherence in the processing bits. A more complicated substitute to eq. 3 might be an
operator , applying the already known ANN performance calculations represented by a function on :

(5)

This could be done by summing the results from each (on each training set) into another quantum
register , representing the respective weight vector. When applying a quantum search on after all, this then
must include an average calculation, resulting in the overall RMSE. The structure of a quantum feed forward
artificial neural network does not differ from a normal one, but the concept of linear superposition is one of the
differences that can be described graphically [1] (

Fig.1. Quantum artificial neural network).

|i1›

|i2›

|h1›

|h2› |o1›

ψwi1h1

ψwh2o1

ψw
h1o1

|h3›

|hn›

|on›

|in›

ψwi1h2ψ
w

i1h3

ψ
w

i1hn

ψw i2h
1

ψwi2h2
ψw

i2h3

ψ
w

i2hn

ψw
in

h1

ψw inh
2

ψwinh3

ψw
inhn

ψ
w

h1on

ψw
h2on

ψwh3o1

ψwh3on

ψw
h4

o1

ψwh4on

Fig.1. Quantum artificial neural network.

Fig.1. Quantum artificial neural network describes that neurons are represented as quantum registers, meaning

that the input registers hold any possible input dataset of the training data. Assuming a QANN shall be

1511 Florian Neukart and Sorin-Aurel Morar / Procedia Engineering 69 (2014) 1509 – 1517

used to learn a problem based on input datasets each consisting of three attributes, it would contain three input
registers (input neurons in a standard ANN), each holding any value its related training data attribute. The same
holds for the hidden layer, represented by , whose quantum neuron registers hold the calculated,
weighted sum of the actual training input coming from . The final layer holds the calculated
output the neural network is capable of producing based on the actual training data set. Furthermore, the
superpositions of the weight vectors are important to explain, as these hold every possible value they can represent,
independent from the training data.

2. Quantum parallelism

Assuming a training set consisting of hundreds of input data sets each featuring a number of attributes, then the
input register would at first grow horizontally and secondly in a classical computer would have to be applied on
every single input data set consecutively not only once, but times, where represents the number of iterations
(weigt adaptions) a training algorithm requires for adapting the overall weight vector of an ANN. Let further
assume, 100 (fictive and not related to the inputs, but in numbers easier describe) Hadamard transformations (gates)
would be applied on every Qbit before the application of , like

 (6)

then the final state would contain or applications of (Mermin, 2007). However, quantum
parallelism allows the performance of an exponentially high quantity of in unitary time. This means that indeed
every training set would require one application of , but only once, as all possible weight vectors coexist in
quantum linear superposition.

3. From basic operators to the quantum transfer function

From [1] we can further see that the whole processing of a quantum artificial neural network can be described as
single transformation. However, it is required to detail the processing with regards to the activation or transfer
function used by the neurons of the input- and hidden layer. Eq. 6 describes the sigmoid function as quantum
function

 (7)

where the quantum linear superposed contains all possible values resulting from calculation based on the
previous neuron layer output multiplied by the related weight vectors in superposition. This has not solved the basic
challenge of arithmetic operations, like the multiplication or division required for all

 (8)

 (9)

 (10)

After four subsequent applications of controlled , the result is identity, and further three applications of the same
operator result in its inverse, which is also its complex conjugate transpose . As mentioned beforehand, all
operators must be linear, thus

 (11)

where is the complex conjugate transpose, or adjoint, of , and the identity operator. Thus, the resulting
operator is c- . Back to cNOT, this operator can be built as in

Fig. 2. cNOT from H and V:

1512 Florian Neukart and Sorin-Aurel Morar / Procedia Engineering 69 (2014) 1509 – 1517

H HV V

Fig. 2. cNOT from H and V.

 (12)

 (13)

 (14)

 (15)

This forms a very good basis for creating further operators, and indeed this needs to be done: for being able to
perform all the arithmetic of the perceptron equations, another operator must be created, which is the ccNOT-
operator (controlled-controlled-NOT), also known as Toffoli-gate [2] (

Fig. 3. Toffoli-gate with controlled V and
Fig. 4 . Toffoli-gate with complex conjugate transpose V):

H HV VV V V

Fig. 3. Toffoli-gate with controlled V.

Or, with the already mentioned quantum gate :

H HV VVt

Fig. 4 . Toffoli-gate with complex conjugate transpose V.

This can be described in mathematical form by the quantum operations in the eqs. 16 and 17:

(16)

1513 Florian Neukart and Sorin-Aurel Morar / Procedia Engineering 69 (2014) 1509 – 1517

(17)

The Toffoli-gate, as controlled-controlled-NOT gate, features two control-bits, one more than the original
cNOT-gate. The target bit is flipped only, and only when both of the control bits feature the state .
Furthermore this provides a very important feature for multiplication (which in fact on binary level is an addition),
namely a reversible AND-gate, if the target has initially featured the state : the target becomes the logical AND-
operator of the two control bits as described in eq. 18 [3]:

 (18)

Thus, all required arithmetic operations, which are NOT, AND and XOR (cNOT), are available now as unitary
transformations, which means that they can be stacked together to a larger unitary transformation for approaching
the quantum perceptron equations. A combination of the Toffoli-gate and the cNOT-operator as quantum-adder
form the basis for full addition and multiplication (

Fig. 5. Quantum addition):

|x>1

|0>

|x>2

|x>1

|x1x2>

|x1 XOR x2>SUM =

CARRY =

Fig. 5. Quantum addition.

Furthermore, any Boolean function which maps bits from an input register to bits of an output register may
be evaluated (eq. 19).

 (19)

As the operation of AND is not reversible, it needs to be embedded into the ccNOT-operator. If the third bit has
initially been set to 1 instead of 0 then the value is flipped. Generally, the action of the Toffoli-gate is
written as described in eq. 23:

 (20)

Summing up, the function evaluation may be described as unitary evolution of the input and output registers (eq.
24):

 (21)

Thus, also more complex functions like the quantum sigmoid function (eq. 7), which include power functions
like may be constructed, as the example of

 (22)

A quantum network (the construct of quantum operators) calculating
 (23)

such that eq. 22 acts as described in eqs. 24 – 27:
 (24)

 (25)

1514 Florian Neukart and Sorin-Aurel Morar / Procedia Engineering 69 (2014) 1509 – 1517

 (26)

 (27)

which in terms of quantum computation is
 (28)

an example being eq. 29, which is eq. 28 [3]:
 (29)

It becomes obvious from the above explanations that arithmetic operations like multiplication are not ones that
benefit from quantum effects, as these still are step-by-step-operations. The benefit occurs, when multiple of these
operations for different configurations coexist and can be calculated simultaneously due to quantum parallelism in
the quantum state of a physical system, like an artificial neural network in quantum linear superposition.

4. The desired configuration

As numerous configurations (towards infinity) configurations of the quantum artificial neural network’s ray exist
in linear superposition at once, it is tricky to figure out the correct one. At this point, Grover's algorithm [4] quantum
database search algorithm, or more precisely, function inversion algorithm, used for searching a special
configuration or item in an unsorted database (which is in case of the QANN the performance register in linear
superposition) needs to be applied. Grover's algorithm provides the answer to when the system shall be measured, as
measurement lets the superposition collapse, which eliminates all possible configurations of the QANN except the
one measured. It is important to mention that the algorithm is capable of finding the desired solution in time
(iterations), which is nothing that can be done on a von Neumann computer.

5. Quantum artificial neural network configuration search function

When searching an unstructured database, containing datasets, and with the search function , called
search oracle, then according to probability theory the probability for finding the desired dataset is , where

 is the number of randomly chosen database entries. Thus, on a von Neumann computer searching requires an
oracle querying all datasets (eq. 30).

 (30)

calls of the oracle , if

 (31)

According to Grover’s search algorithm, the number of oracle calls can be reduced dramatically, when inverting
the phase of the desired basis states followed by an inversion of all basis states about the average amplitude of all
states. The repetition of this process produces an increase of the amplitude of the desired basis state to near unity,
followed by a corresponding decrease in the amplitude of the desired state back to its original magnitude [10].
Grover detected that this routine just needs to be called a number of repetitions that does not exceed , which is

 iterations and thus, although the search is stochastic somehow, it outperforms a classical computer [1].When
 describes a two-dimensional Hilbert-space with the already known orthonormal basis of and

 describes the orthonormal basis the Hilbert space

(32)

where again represents the tensor product. Here, the unitary transformation represents the oracle function
 by

 (33)

1515 Florian Neukart and Sorin-Aurel Morar / Procedia Engineering 69 (2014) 1509 – 1517

again representing the exclusive or. However, as already indicated beforehand, the inner workings of the
unitary transformation are not known. However, it may be replaced by another computationally equivalent
unitary transformation, namely

 (34)

Equivalence is given, as

 (35)

Furthermore, results from a controlled and two one-bit Hadamard transformations, and is, in fact, an
inversion in about the hyperplane orthogonal to . Thus, may also be expressed as the tensor product of
the desired ket with its bra and the identity transformation , now represented as a ray [5, 6]:

 (36)

6. Example processing

The already explained Hadamard-transformation needs to be applied for creating a superposition of all database
entries, as described with eq. 6. In terms of the quantum artificial neural network, a conglomerate of all basis states
each in a specific state represent one configuration. The Hadamard transformation applied to create is

(37)

where is the number of datasets and represents the possible basis states of a neuron or even a whole artificial
neural network. It is important to mention here that contains amongst all other basis states. Both states span
a Euclidean plane, and Grover’s algorithm rotates about its origin as often as it takes this state to be as close to

 as possible. This is the time the measurement needs to be done. However, before that the unitary transformation
 (38)

where denotes the desired vector that is going to be measured, given from
 (39)

 , or in its basic form, being an inversion with of the following character:
 (40)

From this, one can say that if is a unit length ket in the Hilbert space and a unitary transformation on ,
then

 (41)

This means that applied on the inversion of the ket , followed by the application of the inversion of the ,
namely . It is important to know that the inversion of a unitary operator is always its adjunct. If this is not the
case, the operator is not unitary. The result of equation (is then the inversion of after has worked on it. Back
to and eq. 38 this means that is a rotation of a specific state within towards the desired value of the
query by a specific angle . The rotation starts from two unit length vectors orthogonal to and , namely

 and with the same origin and being the angle between these. The application of the transformation
described in eq. 6 on these two vectors will result in a reflection in followed by a reflection in , which is
the same as a rotation by . Summing up,

 (42)

is a rotation of by towards [5] (
Fig. 6. Rotation towards).

1516 Florian Neukart and Sorin-Aurel Morar / Procedia Engineering 69 (2014) 1509 – 1517

β2β

β

β

α α

Fig. 6. Rotation towards .

Finally, the number of rotations needs to be determined, as too many rotations will rotate past and too
few of them would lead to a stop way before it. Both are not desirable. From the latter explanations and Figure 45 -
Rotation towards it is obvious that

 (43)

After rotations, or applications of the resulting state is
 (44)

Lomonaco (Lomonaco, 2000) describes moreover that the target now is to find an integer so that
 is as close to one as possible, or in another term, an integer that is very close to . The angle is

complimentary to :
 (45)

As a consequence,

 (46)

Furthermore,

 (47)

According to this,

 (48)

and

(49)

Although the algorithm is generally described as database search algorithm, it would be more suitable to describe
it as function inverter. This is, because for a given function the algorithm is able to determine . Ricks and
Ventura [7] made a very interesting proposal of how the optimal solution may be determined by a generalization of
the of Grover’s algorithm made of Boyer et al. [8].Another approach could be as follows: the output of a node would
be and according to Grover’s algorithm the determination of is possible, which has to happen with a quantum
search routine . This search routine must then calculate backwards through the network, which is quite different
from any other approach in neural network learning. Usually, is given and one tries to determine and adapts

 through a learning algorithm as long as it is required to fulfil a stopping criterions, like the RMSE. However, as
only is given, is required to find the correct input to the desired output. Thus, the calculated output must be
taken and the calculation must go backwards. Let assume, the perceptron equation is as follows:

1517 Florian Neukart and Sorin-Aurel Morar / Procedia Engineering 69 (2014) 1509 – 1517

(50)

Then must be

 (51)

and the error calculation

(52)

where represents the number of outputs and the input values.However, again and before that, the input
register consisting of a number of Qbits has to be put into superposition as it has already been done in eq. 54:

(54)

Also, the already introduced unitary transformation is required, plus an additional unitary transformation
acting on the input register as with a fixed form not depending on and preserving the component of any state
along the standard (initial) state , but changing the sign of its component orthogonal to :

 (55)

representing the projection operator on [9]. Given these to transformations, Grover’s algorithm
applies the Product many times onto the input register in . Furthermore, each invocation of requires the
quantum search routine or unitary operator to be executed, which must be able to work with the superpositions of
the QANN’s states and which compares the entries of the database, or in the case of a quantum artificial neural
network, the desired output with the calculated output. Summing up, in both algorithms the quantum search seeks to
let the system fall into decoherence when the probability amplitudes for measuring the desired state near unity.

7. Conclusion

The work shows that all quantum operations required for processing a quantum artificial neural network can be
constructed theoretically. Thus, an implementation of a quantum system capable of processing such a structure
‘only’ depends on a stable quantum computer.

References

[1] F. Neukart, Moraru Sorin-Aurel (2013): On Quantum Computers and Artificial Neural Networks. Journal of Signal Processing Research,
vol. 2, 1, 2013.

[2] T. Toffoli (1981): Mathematical Systems Theory 14 13.
[3] Quantiki (2005): Basic concepts in quantum computation [2013-01-02]; URL:

http://www.quantiki.org/wiki/Basic_concepts_in_quantum_computation
[4] L. K. Grover (1996): A fast quantum mechanical algorithm for database search, Proceedings of the 28th Annual ACM Symposium on the

Theory of Computation, pp.212-219.
[5] S. J. Lomonaco Jr. (2000): Grover’s Quantum Search Algorithm; Mathematics Subject Classification. Primary 81P68; Secondary 81-01.
[6] A. Kitaev (1995): Quantum measurements and the Abelian Stabilizer Problem; L. D. Landau Institute for Theoretial Physics.
[7] B. Ricks, D. Ventura (2003): Training a Quantum Neural Network; Provo: Brigham Young University.
[8] M. Boyer et al. (1996): Tight Bounds on Quantum Searching, Fourth Workshop on Physics and Computation.
[9] D. N. Mermin (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge University Press.
[10] A. Ezhov, D. Ventura (-): Quantum neural networks, BSTU Laboratory of Artificial Neural Networks.

