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Abstract 

The advances that have been achieved in quantum computer science to date, slowly but steadily find their way into the field of 
artificial intelligence. Specifically the computational capacity given by quantum parallelism, resulting from the quantum linear 
superposition of quantum physical systems, as well as the entanglement of quantum bits seem to be promising for the 
implementation of quantum artificial neural networks. Within this elaboration, the required information processing from bit-level 
up to the computational neuroscience-level is explained in detail, based on the combined research in the fields of quantum 
physics and artificial neural systems. 
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1. Introduction 

From [1], where most of the introductory information has been taken from, a possible implementation of a 
quantum artificial neural network calculation, beginning with a superposition of all possible weight vectors has been 
proposed. The superposed weight vectors would allow classifying all training examples with respect to every weight 
vector at once. In the proposal, a performance register is used to store the number of correctly classified training 
examples and updated continuously. The update of the performance register with respect to each configuration of 
the QANN creates an entanglement of and . Thus the oracle is 

(1) 

where represents the number of training examples (inputs) and the number of output neurons. As it may occur 
that either no configuration of a network within the superposition is able to classify all  training examples correctly 
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(and therefore every vector has an equal chance of being measured) or the amount of time required for finding a 
vector is increasing with the number of bits in the weight vector and thus exponential complexity: 

For avoiding the first case, Ventura and Ricks suggest modifying the search oracle to 
 (3) 

where  is the percentage of correctly classified training examples. With respect to quantum artificial neural 
networks, this means that any possible configuration of the quantum ANN is kept within the quantum linear 
superposition. However, there is still the problem of measurement, as measurement needs to be done when 
probability of receiving a desired result is high. Let assume a quantum register consisting of 64 Qbits each in the 
already known state 

 (4) 

then every possible state, or every value (double) that can be expressed with these 64 bits may be measured, but 
with the same probability distribution, so any of these double values would exist in this quantum register at once. 
This is where quantum entanglement comes into play, as each possible weight vector is entangled with a slot in the 
performance register due to processing. Therefore, a measurement on the performance register when the probability 
of measuring the desired output is close to 1 will also reveal the desired overall weight vector (ANN configuration) 
due to the resulting loss of coherence in the processing bits. A more complicated substitute to eq. 3 might be an 
operator , applying the already known ANN performance calculations represented by a function  on : 

 

(5) 

This could be done by summing the results from each  (  on each training set) into another quantum 
register ,  representing the respective weight vector. When applying a quantum search on  after all, this then 
must include an average calculation, resulting in the overall RMSE. The structure of a quantum feed forward 
artificial neural network does not differ from a normal one, but the concept of linear superposition is one of the 
differences that can be described graphically [1] ( 

Fig.1.  Quantum artificial neural network). 
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Fig.1.  Quantum artificial neural network. 

 
Fig.1.  Quantum artificial neural network describes that neurons are represented as quantum registers, meaning 

that the input registers  hold any possible input dataset of the training data. Assuming a QANN shall be 
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used to learn a problem based on input datasets each consisting of three attributes, it would contain three input 
registers (input neurons in a standard ANN), each holding any value its related training data attribute. The same 
holds for the hidden layer, represented by , whose quantum neuron registers hold the calculated, 
weighted sum of the actual training input coming from . The final layer  holds the calculated 
output the neural network is capable of producing based on the actual training data set. Furthermore, the 
superpositions of the weight vectors are important to explain, as these hold every possible value they can represent, 
independent from the training data. 

2. Quantum parallelism 

Assuming a training set consisting of hundreds of input data sets each featuring a number  of attributes, then the 
input register would at first grow horizontally and secondly  in a classical computer would have to be applied on 
every single input data set consecutively not only once, but  times, where  represents the number of iterations 
(weigt adaptions) a training algorithm requires for adapting the overall weight vector of an ANN. Let further 
assume, 100 (fictive and not related to the inputs, but in numbers easier describe) Hadamard transformations (gates) 
would be applied on every Qbit before the application of , like 

 (6) 

then the final state would contain  or  applications of  (Mermin, 2007). However, quantum 
parallelism allows the performance of an exponentially high quantity of  in unitary time. This means that indeed 
every training set would require one application of , but only once, as all possible weight vectors coexist in 
quantum linear superposition. 

3. From basic operators to the quantum transfer function 

From [1] we can further see that the whole processing of a quantum artificial neural network can be described as 
single transformation. However, it is required to detail the processing with regards to the activation or transfer 
function used by the neurons of the input- and hidden layer. Eq. 6 describes the sigmoid function as quantum 
function 

 (7) 

where the quantum linear superposed  contains all possible values resulting from calculation based on the 
previous neuron layer output multiplied by the related weight vectors in superposition. This has not solved the basic 
challenge of arithmetic operations, like the multiplication or division required for all  

 (8) 

 (9) 

 (10) 

After four subsequent applications of controlled , the result is identity, and further three applications of the same 
operator result in its inverse, which is also its complex conjugate transpose . As mentioned beforehand, all 
operators must be linear, thus 

 (11) 

where  is the complex conjugate transpose, or adjoint, of , and  the identity operator. Thus, the resulting 
operator is c- . Back to cNOT, this operator can be built as in  

Fig. 2. cNOT from H and V: 
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H HV V
 

Fig. 2. cNOT from H and V. 

 (12) 

 (13) 

 (14) 

 (15) 

This forms a very good basis for creating further operators, and indeed this needs to be done: for being able to 
perform all the arithmetic of the perceptron equations, another operator must be created, which is the ccNOT-
operator (controlled-controlled-NOT), also known as Toffoli-gate [2] ( 

Fig. 3. Toffoli-gate with controlled V and  
Fig. 4 . Toffoli-gate with complex conjugate transpose V): 
 

H HV VV V V
 

Fig. 3. Toffoli-gate with controlled V. 

 
Or, with the already mentioned quantum gate : 
 

H HV VVt
 

Fig. 4 . Toffoli-gate with complex conjugate transpose V. 

 
This can be described in mathematical form by the quantum operations in the eqs. 16 and 17: 

 

(16) 
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(17) 

The Toffoli-gate, as controlled-controlled-NOT gate, features two control-bits, one more than the original 
cNOT-gate. The target bit is flipped only, and only when both of the control bits feature the state . 
Furthermore this provides a very important feature for multiplication (which in fact on binary level is an addition), 
namely a reversible AND-gate, if the target has initially featured the state : the target becomes the logical AND-
operator of the two control bits as described in eq. 18 [3]: 

 (18) 

Thus, all required arithmetic operations, which are NOT, AND and XOR (cNOT), are available now as unitary 
transformations, which means that they can be stacked together to a larger unitary transformation for approaching 
the quantum perceptron equations. A combination of the Toffoli-gate and the cNOT-operator as quantum-adder 
form the basis for full addition and multiplication ( 

Fig. 5.  Quantum addition): 
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Fig. 5.  Quantum addition. 

Furthermore, any Boolean function which maps  bits from an input register to  bits of an output register may 
be evaluated (eq. 19). 

 (19) 

As the operation of AND is not reversible, it needs to be embedded into the ccNOT-operator. If the third bit has 
initially been set to 1 instead of 0 then the value  is flipped. Generally, the action of the Toffoli-gate is 
written as described in eq. 23:  

 (20) 

Summing up, the function evaluation may be described as unitary evolution of the input and output registers (eq. 
24): 

 (21) 

Thus, also more complex functions like the quantum sigmoid function (eq. 7), which include power functions 
like  may be constructed, as the example of 

 (22) 

A quantum network (the construct of quantum operators) calculating 
 (23) 

such that eq. 22 acts as described in eqs. 24 – 27: 
 (24) 

 (25) 
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 (26) 

 (27) 

which in terms of quantum computation is 
 (28) 

an example being eq. 29, which is eq. 28 [3]: 
 (29) 

It becomes obvious from the above explanations that arithmetic operations like multiplication are not ones that 
benefit from quantum effects, as these still are step-by-step-operations. The benefit occurs, when multiple of these 
operations for different configurations coexist and can be calculated simultaneously due to quantum parallelism in 
the quantum state of a physical system, like an artificial neural network in quantum linear superposition. 

4. The desired configuration 

As numerous configurations (towards infinity) configurations of the quantum artificial neural network’s ray exist 
in linear superposition at once, it is tricky to figure out the correct one. At this point, Grover's algorithm [4] quantum 
database search algorithm, or more precisely, function inversion algorithm, used for searching a special 
configuration or item in an unsorted database (which is in case of the QANN the performance register in linear 
superposition) needs to be applied. Grover's algorithm provides the answer to when the system shall be measured, as 
measurement lets the superposition collapse, which eliminates all possible configurations of the QANN except the 
one measured. It is important to mention that the algorithm is capable of finding the desired solution in  time 
(iterations), which is nothing that can be done on a von Neumann computer. 

5. Quantum artificial neural network configuration search function 

When searching an unstructured database, containing  datasets, and with the search function , called 
search oracle, then according to probability theory the probability  for finding the desired dataset  is , where 

 is the number of randomly chosen database entries. Thus, on a von Neumann computer searching  requires an 
oracle querying all datasets (eq. 30). 

 (30) 

calls of the oracle , if 

 (31) 

According to Grover’s search algorithm, the number of oracle calls can be reduced dramatically, when inverting 
the phase of the desired basis states followed by an inversion of all basis states about the average amplitude of all 
states. The repetition of this process produces an increase of the amplitude of the desired basis state to near unity, 
followed by a corresponding decrease in the amplitude of the desired state back to its original magnitude [10]. 
Grover detected that this routine just needs to be called a number of repetitions that does not exceed , which is 

 iterations and thus, although the search is stochastic somehow, it outperforms a classical computer [1].When 
 describes a two-dimensional Hilbert-space with the already known orthonormal basis of  and 

 describes the orthonormal basis the Hilbert space 

 
(32) 

where  again represents the tensor product. Here, the unitary transformation represents the oracle function 
 by 

 (33) 
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again representing the exclusive or. However, as already indicated beforehand, the inner workings of the 
unitary transformation  are not known. However, it may be replaced by another computationally equivalent 
unitary transformation, namely 

 (34) 

Equivalence is given, as 

 (35) 

Furthermore,  results from a controlled  and two one-bit Hadamard transformations, and is, in fact, an 
inversion in  about the hyperplane orthogonal to . Thus,  may also be expressed as the tensor product of 
the desired ket with its bra and the identity transformation ,  now represented as a ray [5, 6]: 

 (36) 

6. Example processing 

The already explained Hadamard-transformation needs to be applied for creating a superposition of all database 
entries, as described with eq. 6. In terms of the quantum artificial neural network, a conglomerate of all basis states 
each in a specific state represent one configuration. The Hadamard transformation applied to create  is 

 
(37) 

where  is the number of datasets and  represents the possible basis states of a neuron or even a whole artificial 
neural network. It is important to mention here that  contains  amongst all other basis states. Both states span 
a Euclidean plane, and Grover’s algorithm rotates  about its origin as often as it takes this state to be as close to 

 as possible. This is the time the measurement needs to be done. However, before that the unitary transformation 
 (38) 

where  denotes the desired vector that is going to be measured, given from 
 (39) 

 , or  in its basic form, being an inversion with of the following character: 
 (40) 

From this, one can say that if  is a unit length ket in the Hilbert space  and  a unitary transformation on , 
then 

 (41) 

This means that  applied on the inversion of the ket , followed by the application of the inversion of the , 
namely . It is important to know that the inversion of a unitary operator is always its adjunct. If this is not the 
case, the operator is not unitary. The result of equation ( is then the inversion of  after  has worked on it. Back 
to  and eq. 38 this means that  is a rotation of a specific state  within  towards the desired value of the 
query  by a specific angle . The rotation starts from two unit length vectors orthogonal to and , namely 

 and   with the same origin and  being the angle between these. The application of the transformation 
described in eq. 6 on these two vectors will result in a reflection in  followed by a reflection in , which is 
the same as a rotation by . Summing up, 

 (42) 

is a rotation of  by  towards [5] ( 
Fig. 6.  Rotation towards ). 
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Fig. 6.  Rotation towards . 

Finally, the number of rotations needs to be determined, as too many rotations will rotate  past  and too 
few of them would lead to a stop way before it. Both are not desirable. From the latter explanations and Figure 45 - 
Rotation towards  it is obvious that 

 (43) 

After  rotations, or  applications of  the resulting state is 
 (44) 

Lomonaco (Lomonaco, 2000) describes moreover that the target now is to find an integer  so that 
 is as close to one as possible, or in another term, an integer that  is very close to . The angle  is 

complimentary to : 
 (45) 

As a consequence, 

 (46) 

Furthermore, 

 (47) 

According to this, 

 (48) 

and 

 
(49) 

Although the algorithm is generally described as database search algorithm, it would be more suitable to describe 
it as function inverter. This is, because for a given function  the algorithm is able to determine . Ricks and 
Ventura [7] made a very interesting proposal of how the optimal solution may be determined by a generalization of 
the of Grover’s algorithm made of Boyer et al. [8].Another approach could be as follows: the output of a node would 
be  and according to Grover’s algorithm the determination of  is possible, which has to happen with a quantum 
search routine . This search routine must then calculate backwards through the network, which is quite different 
from any other approach in neural network learning. Usually,  is given and one tries to determine  and adapts 

 through a learning algorithm as long as it is required to fulfil a stopping criterions, like the RMSE. However, as 
only  is given,  is required to find the correct input to the desired output. Thus, the calculated output must be 
taken and the calculation must go backwards. Let assume, the perceptron equation is as follows: 
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(50) 

Then  must be 

 (51) 

and the error calculation 

 

(52) 

where  represents the number of outputs and  the input values.However, again and before that, the input 
register consisting of a number of  Qbits has to be put into superposition as it has already been done in eq. 54: 

 
(54) 

Also, the already introduced unitary transformation  is required, plus an additional unitary transformation  
acting on the input register as  with a fixed form not depending on  and preserving the component of any state 
along the standard (initial) state , but changing the sign of its component orthogonal to : 

 (55) 

representing the projection operator on  [9]. Given these to transformations, Grover’s algorithm 
applies the Product  many times onto the input register in . Furthermore, each invocation of  requires the 
quantum search routine or unitary operator to be executed, which must be able to work with the superpositions of 
the QANN’s states and which compares the entries of the database, or in the case of a quantum artificial neural 
network, the desired output with the calculated output. Summing up, in both algorithms the quantum search seeks to 
let the system fall into decoherence when the probability amplitudes for measuring the desired state near unity. 

7. Conclusion 

The work shows that all quantum operations required for processing a quantum artificial neural network can be 
constructed theoretically. Thus, an implementation of a quantum system capable of processing such a structure 
‘only’ depends on a stable quantum computer. 
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