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Abstract 

In a time-critical world knowledge at the right time might decide everything. However, storing data does not correspond with 
understanding the knowledge it contains. Thus, solutions capable of learning problem statements and gathering knowledge from 
huge amounts of data, be it structured or unstructured, are required. This is where computational intelligence and the introduced 
approach apply: within this paper, a new method of combining restricted Boltzmann machines and feed forward artificial neural 
networks is elucidated as well as the accuracy of the resulting solution is proofed. 
© 2014 The Authors. Published by Elsevier Ltd . 
Selection and peer-review under responsibility of DAAAM International Vienna. 
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1. Introduction 

A significant need exists for techniques and tools with the ability to intelligently assist humans in analyzing very 
large collections of data in search of useful knowledge; in this sense, the area of data mining (DM) has received 
special attention [1]. Data mining is the process of discovering valuable information from observational data sets, 
which is an interdisciplinary field bringing together techniques from databases, machine learning, optimization 
theory, statistics, pattern recognition, and visualization [2]. As the term indicates, practically applied data mining 
functions and algorithms are the tools to detect (mine) coherencies between data out of unmanageable amounts of 
raw data. DM finds application in several fields of industry, science or even daily life, as some examples are 
customer acquisition, prediction of weather or the evaluation of user-specific click paths in online portals for 
offering the user products of interest. Thus, the aim of data mining is to extract knowledge out of huge amounts of 
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data. Besides conventional, statistical functions as correlation and regression, methods from signal theory, pattern 
recognition, clustering, computational neuroscience, fuzzy systems, evolutionary algorithms, swarm intelligence and 
machine learning are applied [3]. Especially computationally intelligent systems allow the implementation of pattern 
recognition, clustering and learning by the application of evolutionary algorithms and paradigms of computational 
neuroscience. Computational intelligence (CI) is a subfield of artificial intelligence (AI) and needs further 
explanation.AI as a whole tries to make systems behave like humans do, whereas CI relies on evolutionary 
approaches to solve, amongst others, problems suitable for computers, like detecting similarities in huge amounts of 
data or optimization problems. Within the field of AI robotics, CI approaches find application for ensuring robust 
control, planning, and decision making [4,5,6,7,8]. CI techniques have experienced tremendous theoretical growth 
over the past few decades and have also earned popularity in application areas e.g. control, search and optimization, 
data mining, knowledge representation, signal processing, and robotics [9].However, when talking about the 
application of CI-paradigms in the further chapters, it has to be clearly defined which meaning the umbrella term CI 
bears in the field of DM at first. The term itself is highly controversial in research and used in different manners. 
Generally, Fulcher et al. and Karplus provide widely accepted definitions, which are also suitable within the context 
of this elaboration: 

 Nature-inspired method(s) + real-world (training) data = computational intelligence [10]. 
 CI substitutes intensive computation for insight into how the system works. Neural networks, fuzzy systems and 

evolutionary computation were all shunned by classical system and control theorists. CI umbrellas and unifies 
these and other revolutionary methods [11]. 

 Another definition of computational intelligence emphasizes the ability to learn, to deal with new situations, and 
to reason [12]. 

2. The SHOCID project, fundamentals, and actual research 

The introduced approach successfully finds application in a prototypical DM software system named SHOCID 
[13,14,15,16,17]. SHOCID is a generic, knowledge-based neurocomputing [18] (KBN) software system, and the 
acronym for „System applying High Order Computational Intelligence” in data mining (SHOCID), applying 
computational intelligence-paradigms, methods and techniques in the field of data mining. KBN and in the sequel 
SHOCID concerns the use and representation of symbolic knowledge within the neurocomputing paradigm [19, 20]. 
For being able to understand the introduced approach, one is required to be equipped with some basic knowledge of 
two special kinds of artificial neural networks (ANNs) Geoffrey Hinton [22,23] has made considerable research 
efforts on: 

 Boltzmann machines and 
 deep belief networks. 

The first ones belong to the class of fully connected ANNs: each of the neurons of such an ANN features 
connections to every other neuron, except themselves – no self-connections exist, but as many input as output ones. 
Thus, a fully connected ANN has no processing direction like a feed forward ANN has. Two very popular and 
simple fully connected ANNs are the 

 Hopfield network [24] and the 
 Boltzmann machine. 

Especially the latter type is of utmost importance for SHOCID, as it is the foundation the system’s deep belief 
networks for classification. Both network types are presented an initial pattern through its input neurons, which does 
not differ from MLPs. However, according to the weight calculations, a new pattern is received from the output 
neurons. The difference to other ANNs now is that this pattern is fed back to the input neurons, which is possible, as 
the input and output layer are the same. This cycle continues as long as it takes the network to stabilize. Until 
stabilization, the network is in a new state after an iteration, which is used for comparison of the actual pattern and 
the input vector [25]. Both Hopfield ANNs and Boltzmann machines belong to the class of thermal ANNs, as they 
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feature a stochastic component, the energy function, which is applied similarly to simulated annealing-learning. 
Energy-based probabilistic models define a probability distribution through an energy function, as follows: 

 (1) 

where Z is the normalization factor and called the partition function: 
 (2) 

An energy-based model can be learnt by performing (stochastic) gradient descent on the empirical negative log-
likelihood of the training data. 

3. SHOCID deep belief-like ANN 

SHOCID makes use of restricted Boltzmann machines [29] for preparing ANN structures for classification tasks 
within the field of Data Mining. Stacked, restricted Boltzmann machines (RBM) are called deep belief networks 
[23], which learn to extract a deep hierarchical representation of the training data. However, the Boltzmann 
machines used for SHOCID are standard ones and follow the same purpose RBMs in DBNs do. The introduced DB-
like approach does not directly stack together Boltzmann machines, but extracts the weights gathered from training 
for inducing these into a feed-forward ANN. Summing up, this works by normalizing the presented data both 
bipolar and multiplicative, the output of the former one used for training the Boltzmann machines, the latter one for 
training the feed forward ANN. The structure of the DB-like ANNs does not differ from a common feed-forward 
ANN, as the only difference is that the weight initialization does not happen at random, but by extracting the 
weights from pre-trained Boltzmann machines. The following figure helps to understand the proceeding (Fig. 1.  
DB-like ANN): 
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Fig. 1.  DB-like ANN. 

The weight initialization for the multi-layer perceptron does not happen randomly or by any other known 
initialization techniques like e.g. Nguyen-Widrow-randomization. A DBN with l layers models the joint distribution 
between an observed vector x and its l hidden layers hk as follows: 

 (3) 

where  is a visible-given-hidden conditional distribution in an RBM associated with level k of 
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the DBN, and  is the joint distribution in the top-level RBM. The conditional distributions  
and the top-level joint (an RBM)  define the generative model [32]. This does not differ from the 
introduced approach; the difference is to be found in the processing, namely the feature mapping and weight 
shifting.  

4. Processing 

Usually, when dealing with deep belief networks, many hidden layers can be learned efficiently by composing 
restricted Boltzmann machines, using the feature activations of one as the training data for the next [30]. The DB-
like ANNs differ from that as they copy the weights into of the pre-trained Boltzmann machine to an MLP. 
Moreover, DB-like ANNs (= the MLPs with the Boltzmann machine’s weights) apply simulated annealing within 
SHOCID, as the Boltzmann machine itself is a thermal network as well. Thus, SA is the first choice as a learning 
strategy and has furthermore proved to perform well. The processing within the SHOCID DB-like ANNs can be 
split up in six major steps: 

 Data normalization for the Boltzmann machine 
 Boltzmann processing 
 Weight normalization 
 Weight shifting 
 Data normalization for the MLP 
 MLP processing 

4.1. Data normalization for the Boltzmann machine 

For the Boltzmann machine the normalization must output bipolar values. Thus, as a first step the input vector is 
normalized range-mapped, between -1 and 1, which produces a floating point value for each input value not larger 
than 1 and not smaller than -1: 

 (4) 

Breakdown: 
x = The value to normalize 
min = The minimum value x will ever reach 
max = The maximum value that x will ever reach 
low = The low value of the range to normalize into (typically -1 or 0) 
high = The high value of the range to normalize into (typically 0 or 1) 

As the equation shows, mapping allows to map one numeric range to another. For this, a data mining system has 
to perform not only the step of normalization, but also parse through the data to collect the maximum and minimum 
values x (the value to normalize) will ever reach. However, not the floating point values are then fed to the 
Boltzmann machine, but the following output: 

 

 
(5) 

4.2. Boltzmann processing 

In the first iteration, SHOCID creates a Boltzmann machine with the input layer size equal to the size of the 
number of the input vector. The input vector may or may not be a multidimensional array. Independent from the 
training data, which may also contain the values of the output neuron(s), SHOCID is able to determine the 
difference as it requires the user to enter the number of input neurons. The number of hidden neurons represents the 
number of features within the Boltzmann machine. Thus, within the first Boltzmann machine the number of features 
equals the size of the input vector. The first Boltzmann machine is then trained with every input vector of the 
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training data with the target to auto associate the input vector’s states. The higher the number of input vectors, the 
more unlikely it is that even one of the input vectors can be associated correctly. However, after the training has 
finished, the weighs of the current Boltzmann machine are copied into a multidimensional array at position 0 – 
meaning that these will be the weights from the input layer to the first hidden layer in the MLP. Furthermore, all 
associated output vectors have been stored into an array at this time, as these will serve as inputs for the next 
Boltzmann Machine. This process is repeated as often as the number of the network’s hidden layers has been 
reached. Therefore, if an MLP requires 3 hidden layers, SHOCID creates 3 Boltzmann machines and saves the 
weights 3 times. Commonly, the input from one RBM to the next level-one may either be the mean activations 

 or samples of , where  is the visible input RBM and  the RBM above. SHOCID 
applies the latter one, as the input for an RBM is the associated output the RBM below [28]. The first RBM 
forwards the associated output it generates from the original input vector. However, the last Boltzmann machine, 
which is used to determine the weights from the last hidden layer to the output layer of the MLP, uses the number of 
output neurons as the number of features to detect. The output vector may or may not be a multidimensional array as 
well and is of no importance until the last Boltzmann machine has been created. 

4.3. Weight normalization 

In difference to all introduced approaches, not only the input values of the artificial neural network are 
normalized, but also the weights of a trained Boltzmann machine. This is, as especially when a (restricted) 
Boltzmann machine is required to deal with numerous and manifold datasets made up of multiple attributes, its final 
weights tend to differ from each other to a large extent. Therefore, multiplicative normalization (equation 5) is 
applied on the Boltzmann machine’s weights to scale them to proper values. Verification has shown that 
multiplicative normalization of the weights results in a dramatic increase of learning performance during training. 

 (6) 

calculates the weight normalization factor  where  is the weight on position  of the weight list. 

4.4. Weight shifting 

Weight shifting is the process of extracting the normalized weights from the restricted Boltzmann machine and 
inserting them into a newly created layer within a feed forward artificial neural network. 

4.5. Data normalization for the MLP 

Normalization within the MLP happens multiplicative, as per default within all MLPs of SHOCID: 

 (7) 

where  is the value to normalize. 

4.6. MLP processing 

As a last step the MLP is created according to the required number of layers and neurons. Each hidden layer has 
the same number of neurons as the input layer, as within the Boltzmann pre-training each value of an input vector 
was used to create one feature. 

5. Purpose 

Empiric research has shown that although the auto association of the Boltzmann machines does not reproduce 
exactly the presented input values, the copying of the weights of these pre-trained networks to the final MLP does 
intensely decrease the number of training iterations needed. Furthermore, such networks do not require a high 
number of neurons per hidden layer for being able to finish training successful, although the network architecture 
may be of considerable depth. Moreover, the research has shown that such networks are very successful in 
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processing datasets they have not been trained for. 

6. Algorithm 

Furthermore, as simulated annealing has proofed to come to the most accurate solutions in short time within 
cortical ANNs, SHOCID's algorithm for evolving cortical ANNs is as follows: 
 

Start 
1. Repeat 

a) Creation of a Boltzmann machine featuring   neurons in the input layer and  neurons in the hidden layer, and an 
arraylist  for caching the weights before the weight shift.  
i. Initial selection of RBM weights at random. 

ii. Repeat 
1. Set the input neurons’ states to the learning vector , while  
2. For each 
hidden neuron  connected to the input neuron  
set states according to 

 

3. For each 
edge  calculate  
4. For each 
input neuron i connected to the hidden neuron  set states according to 

 

5. For each 
 hidden neuron j connected to the input neuron i set states according to 

 

6. For each 
edge  

a. Calculate  
b. Update weight of  according to 
c.  
d. Add  to  

iii. Until criteria are reached 
b) Calculate the weight normalization factor  with 

 

c) For each 
weight in  

i.  
ii. Replace  with  

iii. Copy the weights of  in the weights array. 
d) Shift the weights 

2. Until the number of hidden layers nh has been reached. 
3. Creation of the final Boltzmann machine  featuring  neurons in the input layer and noutput  neurons in the hidden layer. 
4. Auto associate each input vector of the training data. 
5. Copy the weights of  in the weights array. 
6. Creation of the MLP M with    neurons as input neurons,  hidden layers each featuring  neurons and  neurons 
in the output layer. 
7. Repeat 

a) Calculate the output of  for the value  
b) Evaluate the fitness of each neuron: 
c) Calculate the error  for each output neuron  

 
d) Calculate the error  for each hidden neuron hid 
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e) Repeat 
i. Create new ANN and randomize weights according to T 

ii. Calculate the error  for each output neuron  
 

iii. Calculate the error  for each hidden neuron hid 
 

iv. Compare solutions according to 

v. If  is better than , replace  
f) Until max tries for current temperature reached 
g) Decrease temperature by 

 
8. Until lower temperature bound is reached 
End 

 

Algorithm 1 - DB-like ANN 

Breakdown: 
ninput: Number of input neurons 
noutput: Number of output neurons 
nh: Number of hidden layers 
Bi: The current Boltzmann machine 
M: The MLP to be trained 

: Actual input 
: Error for input  at output neuron on in the current generation 

: Error for hidden neuron 
rmax: Allowed RMSE 

7.  Verification 

A financial problem consisting of data that follows consists of black scholes option prices for volatility levels 
running from 20 percent to 200 percent, for time remaining running from 5 to 15 days, and for strike price running 
from 70 dollars to 130 dollars. The stock price was set to 100 dollars and the interest rate to 0 percent when 
generating the data [33]. The number of datasets to learn was 1,530. However, for this second presented problem the 
elaboration at hand does not contain achieved and ideal outputs, as 1,530 lines for each iteration would then be 
needed. For gathering detailed information, the SHOCID prototype can be applied. Moreover, not only the RMSE 
was important to learn, but the created ANN agents have also only been allowed an absolute deviation from the 
actual learned value to the target value from 5 dollars. 

Table 1. General training parameters. 

Number of training data sets Number of verification datasets Number of input fields Number of output fields 

1,530 100 3 1 

    

The system therefore has to learn the problem provided from scientific consultant services [33]. Furthermore, 
SHOCID had to normalize each of the inputs as the values have initially not been scaled between 0 and 1. Moreover, 
the target was not only to train the solution with the provided 1,530 training data sets and have a look at the 
performance, but also verification on 100 new and not trained datasets, which have been derived from the training 
datasets by correlation to prove the functioning of the solution. As the verification test results have shown that all of 
SHOCID's provided solution types are able to solve non-linear problems, the black scholes test results have only 
been included for the new learning approaches and ANN types as well as for their direct competitors. In case of 
transgeneticNeuroEvolution the direct competitor is standard simulated annealing learning, as the former one is also 
based on SA-learning. 
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7.1. Simulated annealing training 1 

The first simulated annealing training has been applied to the black scholes problem to serve as comparator for 
the DBN-like ANN learning approach, which also makes use of SA learning. 

Table 2. Parameters SA 1. 

Normalization: Input 
fields 

Output 
fields 

Hidden 
Layers 

Hidden 
Neurons 

Allowed 
RMSE 

Allowed absolute deviation of 
target 

Yes 3 1 1 5 1 per cent 5 

                                  Table 3. Simulated annealing 1. 

Run Training iterations Final RMSE 

1 855 2.3440388409399297E-4 

2 755 2.4878078905289343E-4 

3 560 2.4221577041141782E-4 

4 643 3.2309789223214857E-4 

5 764 3.3617530058731646E-4 

 
Solution number 1 has been applied on the test datasets and achieved a classification success of 83 % within the 

allowed parameters. 17 % of the data have been misclassified with an inaccuracy between 5.22 and 13.48 %. The 
following picture shows a typical SA-run (run 3), with continuous error improvement and no outliers, compared to 
transgenetic runs where outliers are very common. 

 

Fig.  2. Simulated Annealing run. 

7.2. Simulated annealing training 2 

The second simulated annealing training has been applied to the black scholes problem to serve as comparator 
for DBN-like ANN learning approach as well, which also makes use of SA learning. However, the difference is that 
the suggested test settings from scientific consultant services [33] have been used in run 1 – 3, which were 22 
neurons in the first hidden layer and 8 in the second. Run 4 and 5 received 40 hidden neurons in the second hidden 
layer, so that more than one configuration of SA solutions serve for comparison. 

Table 4. Parameters SA 2. 

Normalization Input 
fields 

Output 
fields 

Hidden 
Layers 

Hidden 
Neurons 
Layer 1 

Hidden 
Neurons Layer 
2 Run 1 - 3 

Hidden 
Neurons Layer 
2 Run 1 - 3 

Allowed 
RMSE 

Allowed 
absolute 
deviation of 
target 

Yes 3 1 2 22 8 40 1 per cent 5 
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Table 5. Simulated annealing 2. 

Run Training iterations Final RMSE 

1 363 2.3151416966918833E-4 

2 258 2.7189890778372424E-4 

3 454 2.41296129499371E-4 

4 2,396 2.599023163521219E-4 

5 634 3.8e73543294647323E-4 

Solution number 1 has been applied on the test datasets and achieved a classification success of 82 % within the 
allowed parameters. 18 % of the data have been misclassified with an inaccuracy between 0.15 and 12.39 %. 

7.3. Deep belief-like ANNs 

Deep belief-like ANNs make use of simulated annealing learning, in both its Boltzmann machines and the final 
MLP. 

Table 6. Parameters DBN. 

Normalization Input 
fields 

Output 
fields 

Hidden 
Layers 

Allowed 
RMSE 

Allowed absolute overall 
error 

Allowed absolute deviation of 
target 

Yes 3 1 3 1 per cent 5 per cent 5 

Table 7. DB-like ANN. 

Run Training iterations Final RMSE 

1 16 9.966282764783177E-4 

2 5 7.864950633377531E-4 

3 6 9.565366982744945E-4 

4 18 9.397388187292288E-4 

5 6 8.51492249623108E-4 

 
Solution number 1 has been applied on the test datasets and achieved a classification success of 100 % within the 

allowed parameters. 0 % of the data have been misclassified.The following chart shows a typical DB-like ANN 
learning run (run 1), improving its quality quickly without outliers: 

 

Fig. 3.  DB-like ANN run. 

8. Conclusion 

The verification has shown that deep architectures are suitable for solving complex problem statements in every 
day-business, as it outperformed MLPs without pre-classification by RBMs, thus purely relying on learning 
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strategies and intelligent weight initialization. Therefore, also complex ANN structures do not longer belong 
exceptionally to the scientific domain and will find application in data mining solutions in the near future. The tests 
showed that independent from SHOCID's learning approaches, be it learning through genetic approaches or 
propagation applied with common feed-forward ANNs, the DB-like ANN not only learned the presented test 
problem more accurately and in shorter time. Most importantly, the DBN-like approach outperformed any other 
approach in verification as the classification success on new datasets showed 100 % accuracy in the tests. 
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