
 Procedia Engineering 69 (2014) 1499 – 1508

Available online at www.sciencedirect.com

1877-7058 © 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of DAAAM International Vienna
doi: 10.1016/j.proeng.2014.03.147

ScienceDirect

24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013

A Machine Learning Approach for Abstraction Based on the Idea of
Deep Belief Artificial Neural Networks

Florian Neukart*, Sorin-Aurel Moraru
University of Brasov, B-dul Eroilor nr.29, 500036 Brasov, Romania

Abstract

In a time-critical world knowledge at the right time might decide everything. However, storing data does not correspond with
understanding the knowledge it contains. Thus, solutions capable of learning problem statements and gathering knowledge from
huge amounts of data, be it structured or unstructured, are required. This is where computational intelligence and the introduced
approach apply: within this paper, a new method of combining restricted Boltzmann machines and feed forward artificial neural
networks is elucidated as well as the accuracy of the resulting solution is proofed.
© 2014 The Authors. Published by Elsevier Ltd .
Selection and peer-review under responsibility of DAAAM International Vienna.

Keywords: Computational Neuroscience; Computational Intelligence; Data Mining; Artificial Neural Networks

1. Introduction

A significant need exists for techniques and tools with the ability to intelligently assist humans in analyzing very
large collections of data in search of useful knowledge; in this sense, the area of data mining (DM) has received
special attention [1]. Data mining is the process of discovering valuable information from observational data sets,
which is an interdisciplinary field bringing together techniques from databases, machine learning, optimization
theory, statistics, pattern recognition, and visualization [2]. As the term indicates, practically applied data mining
functions and algorithms are the tools to detect (mine) coherencies between data out of unmanageable amounts of
raw data. DM finds application in several fields of industry, science or even daily life, as some examples are
customer acquisition, prediction of weather or the evaluation of user-specific click paths in online portals for
offering the user products of interest. Thus, the aim of data mining is to extract knowledge out of huge amounts of

* Corresponding author. Tel.: +49 171 12 199 12.
E-mail address: florian.neukart@edu.campus02.at

© 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of DAAAM International Vienna

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2014.03.147&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2014.03.147&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

1500 Florian Neukart and Sorin-Aurel Moraru / Procedia Engineering 69 (2014) 1499 – 1508

data. Besides conventional, statistical functions as correlation and regression, methods from signal theory, pattern
recognition, clustering, computational neuroscience, fuzzy systems, evolutionary algorithms, swarm intelligence and
machine learning are applied [3]. Especially computationally intelligent systems allow the implementation of pattern
recognition, clustering and learning by the application of evolutionary algorithms and paradigms of computational
neuroscience. Computational intelligence (CI) is a subfield of artificial intelligence (AI) and needs further
explanation.AI as a whole tries to make systems behave like humans do, whereas CI relies on evolutionary
approaches to solve, amongst others, problems suitable for computers, like detecting similarities in huge amounts of
data or optimization problems. Within the field of AI robotics, CI approaches find application for ensuring robust
control, planning, and decision making [4,5,6,7,8]. CI techniques have experienced tremendous theoretical growth
over the past few decades and have also earned popularity in application areas e.g. control, search and optimization,
data mining, knowledge representation, signal processing, and robotics [9].However, when talking about the
application of CI-paradigms in the further chapters, it has to be clearly defined which meaning the umbrella term CI
bears in the field of DM at first. The term itself is highly controversial in research and used in different manners.
Generally, Fulcher et al. and Karplus provide widely accepted definitions, which are also suitable within the context
of this elaboration:

 Nature-inspired method(s) + real-world (training) data = computational intelligence [10].
 CI substitutes intensive computation for insight into how the system works. Neural networks, fuzzy systems and

evolutionary computation were all shunned by classical system and control theorists. CI umbrellas and unifies
these and other revolutionary methods [11].

 Another definition of computational intelligence emphasizes the ability to learn, to deal with new situations, and
to reason [12].

2. The SHOCID project, fundamentals, and actual research

The introduced approach successfully finds application in a prototypical DM software system named SHOCID
[13,14,15,16,17]. SHOCID is a generic, knowledge-based neurocomputing [18] (KBN) software system, and the
acronym for „System applying High Order Computational Intelligence” in data mining (SHOCID), applying
computational intelligence-paradigms, methods and techniques in the field of data mining. KBN and in the sequel
SHOCID concerns the use and representation of symbolic knowledge within the neurocomputing paradigm [19, 20].
For being able to understand the introduced approach, one is required to be equipped with some basic knowledge of
two special kinds of artificial neural networks (ANNs) Geoffrey Hinton [22,23] has made considerable research
efforts on:

 Boltzmann machines and
 deep belief networks.

The first ones belong to the class of fully connected ANNs: each of the neurons of such an ANN features
connections to every other neuron, except themselves – no self-connections exist, but as many input as output ones.
Thus, a fully connected ANN has no processing direction like a feed forward ANN has. Two very popular and
simple fully connected ANNs are the

 Hopfield network [24] and the
 Boltzmann machine.

Especially the latter type is of utmost importance for SHOCID, as it is the foundation the system’s deep belief
networks for classification. Both network types are presented an initial pattern through its input neurons, which does
not differ from MLPs. However, according to the weight calculations, a new pattern is received from the output
neurons. The difference to other ANNs now is that this pattern is fed back to the input neurons, which is possible, as
the input and output layer are the same. This cycle continues as long as it takes the network to stabilize. Until
stabilization, the network is in a new state after an iteration, which is used for comparison of the actual pattern and
the input vector [25]. Both Hopfield ANNs and Boltzmann machines belong to the class of thermal ANNs, as they

1501 Florian Neukart and Sorin-Aurel Moraru / Procedia Engineering 69 (2014) 1499 – 1508

feature a stochastic component, the energy function, which is applied similarly to simulated annealing-learning.
Energy-based probabilistic models define a probability distribution through an energy function, as follows:

 (1)

where Z is the normalization factor and called the partition function:
 (2)

An energy-based model can be learnt by performing (stochastic) gradient descent on the empirical negative log-
likelihood of the training data.

3. SHOCID deep belief-like ANN

SHOCID makes use of restricted Boltzmann machines [29] for preparing ANN structures for classification tasks
within the field of Data Mining. Stacked, restricted Boltzmann machines (RBM) are called deep belief networks
[23], which learn to extract a deep hierarchical representation of the training data. However, the Boltzmann
machines used for SHOCID are standard ones and follow the same purpose RBMs in DBNs do. The introduced DB-
like approach does not directly stack together Boltzmann machines, but extracts the weights gathered from training
for inducing these into a feed-forward ANN. Summing up, this works by normalizing the presented data both
bipolar and multiplicative, the output of the former one used for training the Boltzmann machines, the latter one for
training the feed forward ANN. The structure of the DB-like ANNs does not differ from a common feed-forward
ANN, as the only difference is that the weight initialization does not happen at random, but by extracting the
weights from pre-trained Boltzmann machines. The following figure helps to understand the proceeding (Fig. 1.
DB-like ANN):

i1

i2

h1

h2

wi1h1

h3

hn

in

wi1h2w
i1h3w

i1hn

w i2h
1

wi2h2
w

i2h3w
i2hn

w in
h1

w inh
2

winh3

w
inhn

i1

i2

h1

h2 o1

wi1h1

wh2o1

w
h1o1

h3

hn

on

in

wi1h2w
i1h3w

i1hn

w i2h
1

wi2h2
w

i2h3w
i2hn

w in
h1

w inh
2

winh3

w
inhn

w
h1on

w
h2on

wh3o1

wh3on

w h4
o1

wh4on

Fig. 1. DB-like ANN.

The weight initialization for the multi-layer perceptron does not happen randomly or by any other known
initialization techniques like e.g. Nguyen-Widrow-randomization. A DBN with l layers models the joint distribution
between an observed vector x and its l hidden layers hk as follows:

 (3)

where is a visible-given-hidden conditional distribution in an RBM associated with level k of

1502 Florian Neukart and Sorin-Aurel Moraru / Procedia Engineering 69 (2014) 1499 – 1508

the DBN, and is the joint distribution in the top-level RBM. The conditional distributions
and the top-level joint (an RBM) define the generative model [32]. This does not differ from the
introduced approach; the difference is to be found in the processing, namely the feature mapping and weight
shifting.

4. Processing

Usually, when dealing with deep belief networks, many hidden layers can be learned efficiently by composing
restricted Boltzmann machines, using the feature activations of one as the training data for the next [30]. The DB-
like ANNs differ from that as they copy the weights into of the pre-trained Boltzmann machine to an MLP.
Moreover, DB-like ANNs (= the MLPs with the Boltzmann machine’s weights) apply simulated annealing within
SHOCID, as the Boltzmann machine itself is a thermal network as well. Thus, SA is the first choice as a learning
strategy and has furthermore proved to perform well. The processing within the SHOCID DB-like ANNs can be
split up in six major steps:

 Data normalization for the Boltzmann machine
 Boltzmann processing
 Weight normalization
 Weight shifting
 Data normalization for the MLP
 MLP processing

4.1. Data normalization for the Boltzmann machine

For the Boltzmann machine the normalization must output bipolar values. Thus, as a first step the input vector is
normalized range-mapped, between -1 and 1, which produces a floating point value for each input value not larger
than 1 and not smaller than -1:

 (4)

Breakdown:
x = The value to normalize
min = The minimum value x will ever reach
max = The maximum value that x will ever reach
low = The low value of the range to normalize into (typically -1 or 0)
high = The high value of the range to normalize into (typically 0 or 1)

As the equation shows, mapping allows to map one numeric range to another. For this, a data mining system has
to perform not only the step of normalization, but also parse through the data to collect the maximum and minimum
values x (the value to normalize) will ever reach. However, not the floating point values are then fed to the
Boltzmann machine, but the following output:

(5)

4.2. Boltzmann processing

In the first iteration, SHOCID creates a Boltzmann machine with the input layer size equal to the size of the
number of the input vector. The input vector may or may not be a multidimensional array. Independent from the
training data, which may also contain the values of the output neuron(s), SHOCID is able to determine the
difference as it requires the user to enter the number of input neurons. The number of hidden neurons represents the
number of features within the Boltzmann machine. Thus, within the first Boltzmann machine the number of features
equals the size of the input vector. The first Boltzmann machine is then trained with every input vector of the

1503 Florian Neukart and Sorin-Aurel Moraru / Procedia Engineering 69 (2014) 1499 – 1508

training data with the target to auto associate the input vector’s states. The higher the number of input vectors, the
more unlikely it is that even one of the input vectors can be associated correctly. However, after the training has
finished, the weighs of the current Boltzmann machine are copied into a multidimensional array at position 0 –
meaning that these will be the weights from the input layer to the first hidden layer in the MLP. Furthermore, all
associated output vectors have been stored into an array at this time, as these will serve as inputs for the next
Boltzmann Machine. This process is repeated as often as the number of the network’s hidden layers has been
reached. Therefore, if an MLP requires 3 hidden layers, SHOCID creates 3 Boltzmann machines and saves the
weights 3 times. Commonly, the input from one RBM to the next level-one may either be the mean activations

 or samples of , where is the visible input RBM and the RBM above. SHOCID
applies the latter one, as the input for an RBM is the associated output the RBM below [28]. The first RBM
forwards the associated output it generates from the original input vector. However, the last Boltzmann machine,
which is used to determine the weights from the last hidden layer to the output layer of the MLP, uses the number of
output neurons as the number of features to detect. The output vector may or may not be a multidimensional array as
well and is of no importance until the last Boltzmann machine has been created.

4.3. Weight normalization

In difference to all introduced approaches, not only the input values of the artificial neural network are
normalized, but also the weights of a trained Boltzmann machine. This is, as especially when a (restricted)
Boltzmann machine is required to deal with numerous and manifold datasets made up of multiple attributes, its final
weights tend to differ from each other to a large extent. Therefore, multiplicative normalization (equation 5) is
applied on the Boltzmann machine’s weights to scale them to proper values. Verification has shown that
multiplicative normalization of the weights results in a dramatic increase of learning performance during training.

 (6)

calculates the weight normalization factor where is the weight on position of the weight list.

4.4. Weight shifting

Weight shifting is the process of extracting the normalized weights from the restricted Boltzmann machine and
inserting them into a newly created layer within a feed forward artificial neural network.

4.5. Data normalization for the MLP

Normalization within the MLP happens multiplicative, as per default within all MLPs of SHOCID:

 (7)

where is the value to normalize.

4.6. MLP processing

As a last step the MLP is created according to the required number of layers and neurons. Each hidden layer has
the same number of neurons as the input layer, as within the Boltzmann pre-training each value of an input vector
was used to create one feature.

5. Purpose

Empiric research has shown that although the auto association of the Boltzmann machines does not reproduce
exactly the presented input values, the copying of the weights of these pre-trained networks to the final MLP does
intensely decrease the number of training iterations needed. Furthermore, such networks do not require a high
number of neurons per hidden layer for being able to finish training successful, although the network architecture
may be of considerable depth. Moreover, the research has shown that such networks are very successful in

1504 Florian Neukart and Sorin-Aurel Moraru / Procedia Engineering 69 (2014) 1499 – 1508

processing datasets they have not been trained for.

6. Algorithm

Furthermore, as simulated annealing has proofed to come to the most accurate solutions in short time within
cortical ANNs, SHOCID's algorithm for evolving cortical ANNs is as follows:

Start
1. Repeat

a) Creation of a Boltzmann machine featuring neurons in the input layer and neurons in the hidden layer, and an
arraylist for caching the weights before the weight shift.
i. Initial selection of RBM weights at random.

ii. Repeat
1. Set the input neurons’ states to the learning vector , while
2. For each
hidden neuron connected to the input neuron
set states according to

3. For each
edge calculate
4. For each
input neuron i connected to the hidden neuron set states according to

5. For each
 hidden neuron j connected to the input neuron i set states according to

6. For each
edge

a. Calculate
b. Update weight of according to
c.
d. Add to

iii. Until criteria are reached
b) Calculate the weight normalization factor with

c) For each
weight in

i.
ii. Replace with

iii. Copy the weights of in the weights array.
d) Shift the weights

2. Until the number of hidden layers nh has been reached.
3. Creation of the final Boltzmann machine featuring neurons in the input layer and noutput neurons in the hidden layer.
4. Auto associate each input vector of the training data.
5. Copy the weights of in the weights array.
6. Creation of the MLP M with neurons as input neurons, hidden layers each featuring neurons and neurons
in the output layer.
7. Repeat

a) Calculate the output of for the value
b) Evaluate the fitness of each neuron:
c) Calculate the error for each output neuron

d) Calculate the error for each hidden neuron hid

1505 Florian Neukart and Sorin-Aurel Moraru / Procedia Engineering 69 (2014) 1499 – 1508

e) Repeat
i. Create new ANN and randomize weights according to T

ii. Calculate the error for each output neuron

iii. Calculate the error for each hidden neuron hid

iv. Compare solutions according to

v. If is better than , replace
f) Until max tries for current temperature reached
g) Decrease temperature by

8. Until lower temperature bound is reached
End

Algorithm 1 - DB-like ANN

Breakdown:
ninput: Number of input neurons
noutput: Number of output neurons
nh: Number of hidden layers
Bi: The current Boltzmann machine
M: The MLP to be trained

: Actual input
: Error for input at output neuron on in the current generation

: Error for hidden neuron
rmax: Allowed RMSE

7. Verification

A financial problem consisting of data that follows consists of black scholes option prices for volatility levels
running from 20 percent to 200 percent, for time remaining running from 5 to 15 days, and for strike price running
from 70 dollars to 130 dollars. The stock price was set to 100 dollars and the interest rate to 0 percent when
generating the data [33]. The number of datasets to learn was 1,530. However, for this second presented problem the
elaboration at hand does not contain achieved and ideal outputs, as 1,530 lines for each iteration would then be
needed. For gathering detailed information, the SHOCID prototype can be applied. Moreover, not only the RMSE
was important to learn, but the created ANN agents have also only been allowed an absolute deviation from the
actual learned value to the target value from 5 dollars.

Table 1. General training parameters.

Number of training data sets Number of verification datasets Number of input fields Number of output fields

1,530 100 3 1

The system therefore has to learn the problem provided from scientific consultant services [33]. Furthermore,
SHOCID had to normalize each of the inputs as the values have initially not been scaled between 0 and 1. Moreover,
the target was not only to train the solution with the provided 1,530 training data sets and have a look at the
performance, but also verification on 100 new and not trained datasets, which have been derived from the training
datasets by correlation to prove the functioning of the solution. As the verification test results have shown that all of
SHOCID's provided solution types are able to solve non-linear problems, the black scholes test results have only
been included for the new learning approaches and ANN types as well as for their direct competitors. In case of
transgeneticNeuroEvolution the direct competitor is standard simulated annealing learning, as the former one is also
based on SA-learning.

1506 Florian Neukart and Sorin-Aurel Moraru / Procedia Engineering 69 (2014) 1499 – 1508

7.1. Simulated annealing training 1

The first simulated annealing training has been applied to the black scholes problem to serve as comparator for
the DBN-like ANN learning approach, which also makes use of SA learning.

Table 2. Parameters SA 1.

Normalization: Input
fields

Output
fields

Hidden
Layers

Hidden
Neurons

Allowed
RMSE

Allowed absolute deviation of
target

Yes 3 1 1 5 1 per cent 5

 Table 3. Simulated annealing 1.

Run Training iterations Final RMSE

1 855 2.3440388409399297E-4

2 755 2.4878078905289343E-4

3 560 2.4221577041141782E-4

4 643 3.2309789223214857E-4

5 764 3.3617530058731646E-4

Solution number 1 has been applied on the test datasets and achieved a classification success of 83 % within the

allowed parameters. 17 % of the data have been misclassified with an inaccuracy between 5.22 and 13.48 %. The
following picture shows a typical SA-run (run 3), with continuous error improvement and no outliers, compared to
transgenetic runs where outliers are very common.

Fig. 2. Simulated Annealing run.

7.2. Simulated annealing training 2

The second simulated annealing training has been applied to the black scholes problem to serve as comparator
for DBN-like ANN learning approach as well, which also makes use of SA learning. However, the difference is that
the suggested test settings from scientific consultant services [33] have been used in run 1 – 3, which were 22
neurons in the first hidden layer and 8 in the second. Run 4 and 5 received 40 hidden neurons in the second hidden
layer, so that more than one configuration of SA solutions serve for comparison.

Table 4. Parameters SA 2.

Normalization Input
fields

Output
fields

Hidden
Layers

Hidden
Neurons
Layer 1

Hidden
Neurons Layer
2 Run 1 - 3

Hidden
Neurons Layer
2 Run 1 - 3

Allowed
RMSE

Allowed
absolute
deviation of
target

Yes 3 1 2 22 8 40 1 per cent 5

1507 Florian Neukart and Sorin-Aurel Moraru / Procedia Engineering 69 (2014) 1499 – 1508

Table 5. Simulated annealing 2.

Run Training iterations Final RMSE

1 363 2.3151416966918833E-4

2 258 2.7189890778372424E-4

3 454 2.41296129499371E-4

4 2,396 2.599023163521219E-4

5 634 3.8e73543294647323E-4

Solution number 1 has been applied on the test datasets and achieved a classification success of 82 % within the
allowed parameters. 18 % of the data have been misclassified with an inaccuracy between 0.15 and 12.39 %.

7.3. Deep belief-like ANNs

Deep belief-like ANNs make use of simulated annealing learning, in both its Boltzmann machines and the final
MLP.

Table 6. Parameters DBN.

Normalization Input
fields

Output
fields

Hidden
Layers

Allowed
RMSE

Allowed absolute overall
error

Allowed absolute deviation of
target

Yes 3 1 3 1 per cent 5 per cent 5

Table 7. DB-like ANN.

Run Training iterations Final RMSE

1 16 9.966282764783177E-4

2 5 7.864950633377531E-4

3 6 9.565366982744945E-4

4 18 9.397388187292288E-4

5 6 8.51492249623108E-4

Solution number 1 has been applied on the test datasets and achieved a classification success of 100 % within the

allowed parameters. 0 % of the data have been misclassified.The following chart shows a typical DB-like ANN
learning run (run 1), improving its quality quickly without outliers:

Fig. 3. DB-like ANN run.

8. Conclusion

The verification has shown that deep architectures are suitable for solving complex problem statements in every
day-business, as it outperformed MLPs without pre-classification by RBMs, thus purely relying on learning

1508 Florian Neukart and Sorin-Aurel Moraru / Procedia Engineering 69 (2014) 1499 – 1508

strategies and intelligent weight initialization. Therefore, also complex ANN structures do not longer belong
exceptionally to the scientific domain and will find application in data mining solutions in the near future. The tests
showed that independent from SHOCID's learning approaches, be it learning through genetic approaches or
propagation applied with common feed-forward ANNs, the DB-like ANN not only learned the presented test
problem more accurately and in shorter time. Most importantly, the DBN-like approach outperformed any other
approach in verification as the classification success on new datasets showed 100 % accuracy in the tests.

References

[1] Nedjah Nadia et al. (2009): Innovative Applications in Data Mining; Berlin Heidelberg: Springer-Verlag, p. 47.
[2] Yin Yong, Kaku Ikou, Tang Jiafu, Zhu JianMing (2011): Data Mining: Concepts, Methods and Applications in Management and

Engineering Design (Decision Engineering); UK: Springer-Verlag, p. V.
[3] Runkler Thomas A. (2010): Data Mining - Methoden und Algorithmen intelligenter Datenanalyse; Wiesbaden: Vieweg+Teubner | GWV

Fachverlage GmbH, p. V.
[4] Liu Dikai, Wang Lingfeng, Tan Kay Chen (2009): Design and Control of Intelligent Robotic Systems; Berlin Heidelberg: Springer-Verlag,

p. 2.
[5] Nolfi Stefano, Floreano Dolfi (2000): Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines;

Bradford Books.
[6] Jain Lakhmi C. (1998): Soft Computing for Intelligent Robotic Systems: Physica-Verlag.
[7] Watanabe Keigo, Hashem M.M.A. (2004): Evolutionary Computations: New Algorithms and Their Applications to Evolutionary Robotics;

Heidelberg: Springer-Verlag .
[8] Teshnehlab M., Watanabe K. (1999): Intelligent Control Based on Flexible Neural Networks (Intelligent Systems, Control and Automation:

Science and Engineering); Dordrecht: Kluwer Academic Publishers.
[9] Liu Dikai, Wang Lingfeng, Tan Kay Chen (2009): Design and Control of Intelligent Robotic Systems; Berlin Heidelberg: Springer-Verlag,

p. 2.
[10] Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-Verlag, p. 38.
[11] Karplus W. (1998) cited in: Kaynak Okyay, Zadeh Lofti A., Türksen Burhan (1998): Computational Intelligence: Soft Computing and

Fuzzy-Neuro Integration with Applications; Berlin: Springer-Verlag.
[12] Eberhart Russel C., Simpson Patrick K., Dobbins Roy (1996): Computational Intelligence PC Tools; Boston MA: Academic Press
[13] Neukart Florian, Moraru Sorin-Aurel, Grigorescu Costin-Marius (2011): High Order Computational Intelligence in Data Mining - A

generic approach to systemic intelligent Data Mining. Proceedings of Speech Technology and Human-Computer Dialogue (SpeD), 2011
6th Conference on, p. 1-9.

[14] Neukart Florian, Moraru Sorin-Aurel, Szakazs-Simon Peter (2011): Problem-dependent, genetically evolving Data Mining solutions.
Proceedings of DAAAM 2011.

[15] Neukart Florian, Moraru Sorin-Aurel, Grigorescu Costin-Marius, Szakazs-Simon Peter (2012): Cortical Artificial Neural Networks and
their Evolution - Consciousness-inspired Data Mining. Proceedings of OPTIM 2012.

[16] Neukart Florian, Moraru Sorin-Aurel, Grigorescu Costin-Marius, Szakazs-Simon Peter (2012): Transgenetic NeuroEvolution. Proceedings
of OPTIM 2012.

[17] Neukart Florian, Moraru Sorin-Aurel, Grigorescu Costin-Marius, Szakazs-Simon Peter (2012), Artificial Immune System-inspired
NeuroEvolution. Proceedings of DAAM, 2012

[18] Cloete Ian, Zurada Jacek M. (2000): Knowledge-Based Neurocomputing; Cambridge: MIT Press
[19] Kolman Eyal, Margaliot Michael (2009): Knowledge-Based Neurocomputing: A Fuzzy Logic Approach; Berlin Heidelberg: Springer-

Verlag, p. 5
[20] Moulay Aziz-Alaoui, Cyril Bertelle (2009): From System Complexity to Emergent Properties; Berlin Heidelberg: Springer-Verlag, p. 212
[21] Neukart Florian et al. (2011): High Order Computational Intelligence in Data Mining - A generic approach to systemic intelligent Data

Mining; Proceedings of Speech Technology and Human-Computer Dialogue (SpeD), 2011 6th Conference on, p. 1-9, p. 2.
[22] Hinton Geoffrey E., Sejnowski Terrence J. (1983): Optimal Perceptual Inference. Proceedings of the IEEE conference on Computer Vision

and Pattern Recognition, Washington DC, pp. 448-453.
[23] Hinton Geoffrey E., Salakhutdinov Ruslan R. (2006): Reducing the dimensionality of data with neural networks, Science, vol. 313, no.

5786, pp. 504–507, 2006.
[24] Hopfield J. Joseph (1982): Neural networks and physical systems with emergent collective computational properties; Proceedings Nat.

Acad. Sci. (USA) 79, 2554-2558.
[25] Heaton Jeff (2010): Programming Neural Networks with Encog 2 in Java; Chesterfield: Heaton Research, Inc., p. 339
[26] Krengel Ulrich (1988): Einführung in die Wahrscheinlichkeitstheorie und Statistik; Braunschweig/Wiesbaden 1988: Verlag Friedrich

Vieweg & Sohn
[27] Kreiszig Erwin (1999): Advanced Engineering Mathematics, 8th ed.; Singapore: John Wiley & Sons, p. 1107.
[28] Deeplearning.net (2012): Restricted Boltzmann Machines (RBM) [2012-15-08]; Deeplearning.net; URL:

http://deeplearning.net/tutorial/rbm.html
[29] Smolensky Pavel (1986): Information processing in dynamical systems: Foundations of harmony theory. In Rumelhart, D. E. and

McClelland, J. L., editors, Parallel Distributed Processing: Volume 1: Foundations, pages 194-281. MIT Press, Cambridge, MA.
[30] Scholarpedia (2011): Boltzmann Machine (2012-15-08); Scholarpedia; URL:

http://www.scholarpedia.org/article/Boltzmann_machine#Restricted_Boltzmann_machines
[31] Edwin Chen’s Blog (2011): Introduction to Restricted Boltzmann Machines [2012-28-08]; URL:

http://blog.echen.me/2011/18/introduction-to -restricted-boltzmann-machines
[32] Bengio Yoshua (2009): Learning Deep Architectures for AI; Foundations and Trendsin Machine Learning, vol. 2, Yoshua Bengio
[33] Scientific Consultant Services (2003): Neural Network Test Data [04-04-2012]; URL: http://www.scientific-consultants.com/nnbd.html

