
 Procedia Engineering 69 (2014) 1356 – 1364

Available online at www.sciencedirect.com

1877-7058 © 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of DAAAM International Vienna
doi: 10.1016/j.proeng.2014.03.129

ScienceDirect

24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013

KNN with TF-IDF Based Framework for Text Categorization

Bruno Trstenjaka*,Sasa Mikacb, Dzenana Donkoc
aDept. of Computer Engineering, Medimurje University of Applied Sciences Cakovec, Croatia

bDept. of Computer Science, Faculty of Electrical Engineering and Computer Science,Maribor, Slovenia
cDept. of Computer Science, Faculty of Electrical Engineering, Sarajevo, Bosnia and Herzegovina

Abstract

KNN is a very popular algorithm for text classification. This paper presents the possibility of using KNN algorithm with TF-IDF
method and framework for text classification. Framework enables classification according to various parameters, measurement
and analysis of results. Evaluation of framework was focused on the speed and quality of classification. The results of testing
showed the good and bad features of algorithm, providing guidance for the further development of similar frameworks.
© 2014 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of DAAAM International Vienna.

Keywords: text documents classification; K-Nearest Neighbor; TF-IDF; framework ; machine learning

1. Introduction

Online document classification or document categorization is a problem in today’s library science, information
and computer science. In the past 20 years, the number of text documents in digital form has grown exponentially
[4]. As a consequence of exponential growth, great importance has been put on the classification of documents into
groups that describe the content of the documents. The function of classifier is to merge text documents into one or
more predefined categories based on their content [9]. Each document can belong to several categories or may
present its own category. Very rapid growth in the amount of text data leads to expansion of different automatic
methods aimed to improve the speed and efficiency of automated document classification with textual content. The
documents to be classified can contain text, images, music, etc. Each content type requires special classification
methods. This article is focused on the textual content documents with special emphasis on text classification. Text

* Corresponding author. Tel.: +385 40 328 246
E-mail address:btrstenjak@mev.hr

© 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of DAAAM International Vienna

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2014.03.129&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

1357 Bruno Trstenjak et al. / Procedia Engineering 69 (2014) 1356 – 1364

classification is one of the problems of text mining. Text mining is an interdisciplinary field that draws on
information retrieval, data mining, machine learning, statistics, and computational linguistics [5].

In this article the working principle of framework for text classification based on using KNN algorithm and TF-
IDF method will be explained. A Framework allows measuring the document similarity on the basis of given textual
pattern. Selecting documents on local or web-based environment, the framework performs the documents
classification and statistical analysis of the results. In the classification of documents a modified original algorithm
optimized at implementation level using Language-Integrated Query (LINQ) and C Sharp programming language
are used.

The K-Nearest Neighbor (KNN) is one of the simplest lazy machine learning algorithms [13,14]. Algorithm
objective is to classify objects into one of the predefined classes of a sample group that was created by machine
learning. The algorithm does not require the use of training data to perform classification, training data can be used
during the testing phase. KNN is based on finding the most similar objects (documents) from sample groups about
the mutual Euclidean distance [1,11].

Term frequency-inverse document frequency (TF-IDF) is a numerical statistic method which allows the
determination of weight for each term (or word) in each document. The method is often used in natural language
processing (NLP) or in information retrieval and text mining [17,18]. The method determines the weight, measure
which evaluates importance of terms (or words) in document collection. The importance of the text is increased
proportionally to the number of appearing in the documents [2,3].

2. KNN & TF-IDF Framework

2.1. General information

The Framework is designed to enable the classification and measurement of similarity of documents based on the
required text sample. It consists of several modules that take users through the process of classification. It consists
with several modules who lead users through the process of classification. Implementation of the Framework is
realized in an object-oriented development environment with the programming language C Sharp.

2.2. Framework structure

Fig. 1. Framework structure.

GUI module Documents
module

Preprocessing
module

KNN & TF-IDF
module

Measuring
module

1358 Bruno Trstenjak et al. / Procedia Engineering 69 (2014) 1356 – 1364

As previously noted, the framework consists of several separate modules. Fig. 1 shows the structure of the new
concept of Framework.

The framework has five basic modules: GUI module, Documents module, Preprocessing module, KNN &
TF_IDF module, Measuring module. GUI module allows user to control the application and the entire framework.
The Documents module is designed for document management and selecting data resources. Document resources
can be located on the local computer or on the Internet. In this module a user can define document categories, the
feature which influences the final results of text classification. The Preprocessing module checks the document
characteristics, prepares and adjusts them into a format suitable for classification. The module adjusts documents to
classic text format, regardless of the type of font and character set. The documents with a specific format module
automatically remove the control characters that might have a negative impact on the result of classification. The
main module in the framework is the KNN & TF_IDF module. The module contains the main methods for
classification and determination of the document weight value. The results of the classification forward to the last
module for the measurement and presentation statistical indicators. The last module allows displaying the
classification results and their simple statistical analysis.

2.3. KNN classifier

As previously mentioned the algorithm is based on the machine learning. Preprocessing and document
preparation is followed by the learning phase. The algorithm determines the basic documents which will be
comparing with each new document. Algorithm checks where a document is categorized by only looking at the
training documents that are most similar to it.

The algorithm assumes that it is possible to classify documents in the Euclidean space as points. Euclidean
distance is the distance between two points in Euclidean space. The distance between two points in the plane with
coordinates p=(x, y) and q=(a, b) can be calculated[19]:

 (1)

2.4. Learning process

Learning process starts with parsing the basic text which searches the words in documents and forms a vector
[10]. Parsing process removes all control characters, spaces between words, dots, commas, and similar characters.
The formed vector represents a fundamental object that will be used for classification of tested documents. Example
1 below illustrates the procedure for preprocessing search text and the formation of the main vector.

Example 1:
Search text: “Text classification, KNN method.”
Preprocessing: Text classification KNN method
Base vector: mainVec = [Text classification KNN method]
mainVec[0]= Text
mainVec[1]= classification
mainVec[2]= k-NN
mainVec[3]= method

1359 Bruno Trstenjak et al. / Procedia Engineering 69 (2014) 1356 – 1364

Structure of the main vector object shown in Fig. 2.

Fig. 2. Graphical presentation of vector.

2.5. Determination of the weight matrix

To provide text classification and searching the documents it is necessary to establish the weight matrix. The
matrix contains the values of relations between each unique words and documents. It is the initial object in the
algorithm to calculate the individual importance (weight) of each searched document. Each document is represented
as a vector in n-dimensional vector space. We can imagine a matrix A with dimensions NxM, where N dimension is
defined by a number of unique words in a sample of all documents. M represents the number of documents to be
classified. Weight matrix can be characterized as a relational matrix of word - document. Dimension of the matrix is
equal to product, the number of different unique words and the total number of documents. Each matrix element aij
represents weight value of word i in the document j. Weight matrix is shown in Fig. 3.

 Fig. 3. Weight matrix.

In determining the weight values in the matrix, we can use different metrics and methods of calculation.

Word 1 | Word 2 | Word 3 | Word 4

mainVec[0] mainVec[1] mainVec[2] mainVec[3]

Vector – main object

1360 Bruno Trstenjak et al. / Procedia Engineering 69 (2014) 1356 – 1364

2.6. Determination of the weight matrix

Term binary
Binary method is extremely simple and easy to implement. The method checks if a particular word (term) appears in
the document. The values in the matrix can be 0 or 1. If the word appears in the document, then the weight value aij
is set to 1, otherwise is set to 0.

Term frequency
The method computes the number of repetitions of a word (term) in the document j [4].

 (2)

Some text classification algorithms performed normalize term frequency by dividing with the frequency of the most
common term in the document.

 (3)

Term frequency – inverse document frequency (TF-IDF)
A very popular research method in the field of natural language processing (NLP) which is used in the
implementation of the algorithm described in this article. TF-IDF method determines the relative frequency of words
in a specific document through an inverse proportion of the word over the entire document corpus. In determining
the value, the method uses two elements: TF - term frequency of term i in document j and IDF - inverse document
frequency of term i. In our research and testing the algorithm of framework this method showed good results. TF-
IDF can be calculated as [16]:

 (4)

where aij is the weight of term i in document j, N is the number of documents in the collection, tfij is the term
frequency of term i in document j and dfi is the document frequency of term i in the collection. This formula
implemented in the framework, during the testing has shown good results when we used the documents with equal
length. In order to obtain better results with documents of different length, we used a modified equation as shown
[7]:

 (5)

Shown below is the experimental pseudo code for the method implemented in the framework for determining the
weight matrix.

Pseudo code 1:
for(i=0 i<numnberOfUniqueWordsi++)
 for(j=0 j<numberOfDocuments j++)

tfidf = fij _ log(numberOfDocuments = ni)
for(s=0 s<numnberOfUniqueWords s++)

 fijTemp = number_of_occurrences_ofword_S_in_the_document_J
 tfidfTemp = fijTemp * log(numberOfDocuments / dfi)
 summTfidf += (tfidfTemp)2

1361 Bruno Trstenjak et al. / Procedia Engineering 69 (2014) 1356 – 1364

 end
 A[i,j] = tfidf/summTfidf
 end
end

In order to limit matrix dimension and optimize the framework work, it is possible to include preprocessor and

remove useless words, which often repeat in documents and do not contain any useful information.

2.7. Text document KNN classification process

At the beginning of the classification it is necessary to select the document that will be carried out for
classification and include it in the belong category [9]. For the selected document its weight value also must be
determined by TF-IDF method, as well as for all other documents. Classification process writes data of the selected
document in a weight matrix to its end, as shown in Fig. 4. Writing down all data in the same weight matrix has
resulted with optimization and reducing the total time of calculation.

In the next step of the process it is necessary to determine K value. K value of the KNN algorithm is a factor
which indicates a required number of documents from the collection which is closest to the selected document. The
classification process determinates the vectors distance between the documents by using the following equation
[12]:

 (6)

where d(x,y) is the distance between two documents, N is the number unique words in the documents collection, arx
is a weight of the term r in document x, ary is a weight of the term r in document y. Pseudo code 2 shows
implementation Euclidean distance calculation, and Fig. 4 shows documents in Euclidian space for factor K=3.
Smaller Euclidean distance between the documents indicates their higher similarity. Distance 0 means that the
documents are complete equal.

Pseudo code 2:

for(i=0 i<numberOfDocumentsi++)
 for(r=0 r<numnberOfUniqueWordsi++)
 d[i] += (A[r,i] - A[r,(numberOfDocument-1)])2
 end
 d[i] = Sqrt(d[i])
end

 Fig. 4. Euclidian space for K=3.

1362 Bruno Trstenjak et al. / Procedia Engineering 69 (2014) 1356 – 1364

3. Framework evaluation

For the purposes of this paper, this section presents the results of framework testing over the sets of 500 online
documents from different categories in the learning phase and classification. Evaluation of Framework was
performed in several test phases:

 test speed calculation of TF-IDF methods with optimization
 test the quality classification
 test speed text classification
 test classification sensitivity according to categories of documents

 Calculation of TF-IDF values in weight matrix has shown as the most demanding part of the implemented
algorithm. For this reason it was necessary to optimize exactly that part of the framework code. Optimization TF-
IDF was performed using LINQ class in C # language, in order to calculate the frequency of appearance of a
particular word in the document. The optimized method showed six times better results than the classic method.
Thus, the optimized code is used in other test phases.
 The results of testing text classification quality are shown in Fig. 5. The tests used the documents of different
lengths, different categories from online sources with 500 documents [8].
 Testing frameworks was performed in online environment, using different combinations and different amounts of
documents [15]. The results indicate the successful implementation of algorithm in the framework whose quality of
classification slightly decreases with the increasing number of documents. Additional testing and analysis showed
much better obtained results if working with documents which belong to the same category, as we predicted. Fig. 6
shows the results of classification depending on the selected documents category. The best results were achieved
with the documents from “Sport” category. The main reason for good results of classification in this category is that
the documents have not been textually demanding. The documents did not contain a large number of different words
which reduced the impact of unusable words and character.
Table 1 shows the speed measurement of classification based on the amount of data. These results directly indicate
performance of the implemented algorithm. The developed framework has certain limitations on his work. The time
required for data processing exponentially increased with the increasing amounts of data. One of the solutions can
be implementation of parallel processing in the framework. It would allow speed up calculation of weight matrix
which is the most demanding part in algorithm.

Fig. 5. The results of testing text classification quality.

1363 Bruno Trstenjak et al. / Procedia Engineering 69 (2014) 1356 – 1364

Fig. 6. The results of testing text classification quality by categories.

The last test was focused on measuring the quality of classification depending on the documents category.
It was previously indicated that the quality of classification depends on the preprocessing documents, removing
undesired characters and words that have no significant information. Table 2 shows the results of successful
classification over the documents from various categories. The results show that the worst classification was
performed in the category Daily News. The analysis of document contents in this category showed that documents
contained a lot of "unusable words", the words that are often repeated and do not have important weight but have
adverse impact on KNN classification.

 Table 1. Speed classification. Table 2. Category classification.

The amount of data (kB) Speed (ms)

4.00 300.00

400.00 3000.00

4000.00 45,000.00

Category of documents KNN Classification

Sport 0,92%

Politics 0,90%

Finance 0,78%

Daily News 0,65%

4. Conclusion

In this paper we present a framework for text classification based on KNN algorithm and the TF-IDF method.
The main motivation for the research was to develop concept of frameworks with emphasis on KNN & TF-IDF
module.

The framework with embedded methods gave good results, confirmed our concept and initial expectations.
Evaluation of framework was performed on several categories of documents in online environment. Tests are
supposed to provide answers about the quality of classification and to determine which factors have an impact on
performance of classification. The framework work was very stable and reliable. During testing the quality of
classification we have achieved good results regardless of the K factor value in the KNN algorithm.

Performed tests have detected a sensitivity of the implemented algorithm. Tests have shown that the embedded
algorithm is sensitive to the type of documents. The analysis of documents contents showed that the amount of
unusable words in documents has a significant impact on the final quality of classification. Because of this, it is
necessary improve the preprocessing of data for achieving better results.

The combination of KNN algorithm and TF-IDF method has been shown as a good choice with minor
modifications in their implementation. The framework provides the ability to upgrade and improve the present
embedded classification algorithm.

1364 Bruno Trstenjak et al. / Procedia Engineering 69 (2014) 1356 – 1364

References

[1] S.Tan, Neighbor-weighted K-nearest neighbor for unbalanced text corpus, Expert Systems with Applications 28 (2005) 667–671.
[2] G.Salton, C.S.Yang, On the specification of term values in automatic indexing, Journal of Documentation, 29 (1973) 351-372.
[3] W.Zhang, T.Yoshida, A comparative study of TF-IDF, LSI and multi-words for text classification, Expert Systems with Applications 38
(2011) 2758–2765.
[4] H.Han, G.Karypis, V.Kumar, Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification, PAKDD (2001) 53-65.
[5] F.Sebastiani, Machine Learning in Automated Text Categorization, Consiglio Nazionale delle Ricerche, 2002.
[6] H.Jiang, P.Li, X.Hu, S.Wang, An improved method of term weighting for text classification, Intelligent Computing and Intelligent Systems,
2009.
[7] J. T.-Y. Kwok, Automatic Text Categorization Using Support Vector Machine, Proceedings of International Conference on Neural
Information Processing, (1998) 347-351.
[8] M.Miah, Improved k-NN Algorithm for Text Classification, DMIN (2009) 434-440.
[9] Y.Liao, V. Rao Vemuri, Using K-Nearest Neighbor Classifier for Intrusion Detection, Department of Computer Science, University of
California, Davis One Shields Avenue, CA 95616.
[10] L.Wang , X. Zhao, Improved KNN classification algorithms research intext categorization, IEEE, 2012.
[11] M.Lan, C.L.Tan, J.Su, Y.Lu, Supervised and Traditional Term Weighting Methods for Automatic Text Categorization, IEEE Transactions
on Pattern Analysis and Machine Intelligence, VOL. 31, NO. 4, 2009.
[12] K. Mikawa, T. Ishidat, M.Goto, A Proposal of Extended Cosine Measure for Distance Metric Learning in Text Classification, 2011.
[13] l.Wang , X. Li, An improved KNN algorithm for text classification, 2010.
[14] G. Guo, H.Wang, D.Bell, Y. Bi, K. Greer, KNN Model-Based Approach in Classification, (2003) 986 – 996.
[15] G. Forman, An Extensive Empirical Study of Feature Selection Metrics for Text Classification, Journal of Machine Learning Research 3
(2003) 1289-1305.
[16] H. Uguz, A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic
algorithm, Knowledge-Based Systems 24 (2011) 1024–1032.
[17] K. Masudaa, T.Matsuzakib, J.Tsujiic, Semantic Search based on the Online Integration of NLP Techniques, Procedia - Social and
Behavioral Sciences 27 (2011) 281 – 290.
[18] C.Friedman, T.C.Rindflesch, M. Corn, Natural language processing: State of the art and prospects for significant progress, a workshop
sponsored by the National Library of Medicine, Journal of Biomedical Informatics 46 (2013) 765–773.
[19] Ming-Yang Su, Using clustering to improve the KNN-based classifiers for online anomaly network traffic identification, Journal of
Networkand Computer Applications 34 (2011) 722–730.

