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Abstract 

In this article we give a brief overview of the theory behind the formal concept analysis, a novel method for data representation 
and analysis. From given tabular input data this method finds all formal concepts and computes a concept lattice, a directed, 
acyclic graph, in which all formal concepts are hierarchically ordered. We describe the link between this method and formal 
logic, as well as graph theory. Finally we present one example of an application of this method in the field of computer aided 
learning. 
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1. Introduction 

When dealing with large sets of data we inevitably need to address the problem of data representation. Many 
different approaches for tackling that problem have been proposed and applied over the years, e.g. various tree 
structures, dendrograms and, more recently, concept lattices. In this paper we will focus on concept lattices and their 
underlying theory of Formal concept analysis. We propose a simple and effective way of applying Formal concept 
analysis in the area of teaching and computer aided learning. Specifically, we want to help instructors with the 
preparation of exam materials, so they can check how a given set of questions covers specific concepts. A given set 
of questions represents the input data for Formal concept analysis, and the resulting concept lattice provides teachers 
with a visual overview of the proposed exam structure, and key information about the found concepts. Furthermore, 
the same concept lattice can be used for analyzing exam results to identify which concepts are harder for students to 
learn and understand. Also, we propose to use exam's concept lattice to optimize the order of questions, by applying 
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topological sorting algorithms to the concept lattice. Finally, we discuss the possibility of using a concept lattices as 
a basis for building ontologies. 

Formal concept analysis (FCA, originally in German Formale Begriffsanalyse) is a method for knowledge 
representation, information management and data analysis. This method finds and visualizes all concepts and their 
dependencies from the tabular input data. Formal concept analysis has been applied in various fields such as 
mathematics, medicine, biology, sociology, psychology or economics. Most interesting applications of FCA are 
arguably in computer science – it can be used for data mining, data analysis, information retrieval, source code error 
correction, machine learning and for building taxonomies and ontologies [5,6,7,8]. 

2. Formal concept analysis 

FCA method was devised in the early 1980s by R. Wille, a German mathematician and professor emeritus at the 
TU Darmstadt. He used the philosophical interpretation of the concept as a unit of thought comprising of a set of 
objects and a set of their shared attributes. Theoretical foundations of FCA are built on applied lattice theory and set 
theory [1,2,3,4,5].  

Input data for FCA method is represented in matrix form, so that each row represents an object from the domain 
of interest, and each column represents one of the defined attributes. Input matrix elements can only assume 
Boolean values, i.e. any object either has or does not have a particular attribute. If an object has a particular attribute 
a mark (e.g. symbol "X") is placed on the intersection of that object's row and that attribute's column. Otherwise, if 
an object does not have a certain attribute the intersection of that object's row and that attribute's column is left 
blank. This input matrix is defined as a formal context on which the analysis will be performed. FCA method results 
in two sets of output data. The first set gives a hierarchical relationship of all the established concepts in the form of 
line diagram called a concept lattice (originally in Germ. Bergiffsverband). The second set gives a list of all found 
interdependencies among attributes in the formal context. 

Definition 1: Formal context in FCA method is a triple X,Y,I  where X and Y are non-empty sets and I is a binary 
relation between X and Y. 

The formal context X,Y,I  of an input matrix of n rows and m columns consists of a set of objects defined as 
X={x1,...,xn}, a set of attributes defined as Y={y1,...,ym} and a binary relation I defined as xi,yj   I if and only if the 
intersection of i-th row and j-th column is not blank, i.e. object xi has an attribute yj. 

Definition 2: For a formal context X,Y,I  we define concept-forming operators : 2X 2Y and : 2Y 2X for each 
A X and B Y as: A ={y Y | for each x A: x,y I} and B ={x X | for each y B: x,y I}. 

A  represents a set of all attributes shared by all objects form set A, and analogously B  represents a set of all 
objects which share all the attributes from set B. This leads to the notion of a formal concept as a segment of the 
formal context in which different objects share the same attributes. 

Definition 3: Formal concept in a formal context X,Y,I  is a pair A,B , where A X and B Y, for which A =B and 
B =A. 

Therefore, A,B  is a formal concept if and only if set A consists only of those objects which have all attributes 
from set B (extent of the concept), and set B consists only of those attributes which are shared by all objects from the 
set A (intent of the concept). Concept's extent and intent can be formally defined using concept-forming operators  
and , i.e. concepts' extent as Ext(X,Y,I)={B  | B Y} and intent as Int(X,Y,I)={A  | A X}. 

We can also define formal concepts visually within the formal context as the maximal rectangles containing only 
symbols "X" and no blank places. 

It is important to note that the formal concepts are hierarchically organized with the subconcept–superconcept 
relation. 

Definition 4: For formal concepts A1,B1  and A2,B2  in a formal context X,Y,I  it holds that A1,B1 A2,B2  if 
and only if A1 A2 and B2 B1. 

Relation ≤ is defined as a partial order between concepts, and it formally describes their subconcept–
superconcept relationship, analogous to object oriented subclass-superclass principle. All the formal concepts from a 
formal context along with all their relationships can be transformed into a concept lattice structure which can be 
presented as a Hesse (line) diagram [16]. 
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Definition 5: Concept lattice of a formal context X,Y,I  is a structure defined as B(X,Y,I), , where B(X,Y,I) is a 
collection of all formal concepts, B(X,Y,I)={ A,B 2X 2Y | A =B,B =A} and ≤ is a partial order relation. 

Concept lattice structure satisfies the mathematical definition of a lattice because it is a partially ordered set 
whose any two elements (formal concepts) have a supremum (join – mutual superconcept) and an infimum (meet – 
mutual subconcept) [16,17]. 

Example: On the left of the Fig. 1 there is a formal context containing 10 objects (freshmen students) and 5 
attributes (first semester freshman year courses at FER). In the formal context all the passed courses are marked 
("X") for each student. On the right of the Fig. 1 there is a concept lattice generated from the formal context on the 
left. We used Lattice Miner Platform 1.4 program for generating concept lattice. We chose a reduced display, i.e. 
attributes are displayed only in the first formal concept occurrence (colored in blue), along with just the number of 
objects for each formal concept instead of an object list (colored in red). 

 

 

Fig. 1. example of a simple formal context (on the left) and its concept lattice (on the right) 

FCA method is mathematically strictly defined, and it is based on Galois connections and closure operators [17]. 
Concept forming operators : 2X 2Y and : 2Y 2X, along with partial order relation ≤ form a Galois connection 
(direct link between formal context's attribute set and object set). We obtain closure operators by composing the 
concept forming operators, : 2X 2X and : 2Y 2Y. 

The core theorem behind FCA method states that the concept lattice is a complete lattice – a partially ordered set 
in which all subsets have a supremum (superconcept) and infimum (subconcept) [16,17]. We will give a formal 
statement of this theorem, and the proof can be found in [4,5]. 

Theorem 1 (Central concept lattice theorem – R. Wille, 1982): B(X,Y,I) is a complete lattice whose infima and 
suprema are given by the following expressions respectively: 

Jj
j

Jj
jjjJj

BABA ,,  and ,,,
Jj

j
Jj

jjjJj
BABA . 

Furthermore, any complete lattice V=(V, ) is isomorphic to a concept lattice B(X,Y,I) if and only there are 
mappings γ: X V and μ: Y V, such that γ(X) is -dense in V, μ(Y) is -dense in V, and γ(X)  μ(Y) if and only if 
x,y I. 

Possibly there can be multiple identical rows or columns in the formal context. In that case we can clean up 
(clarify) the formal context by removing redundant rows or columns. Concept lattices obtained from the clarified 
formal context and from the original formal context are isomorphic (there is a bijective mapping between the 
elements of the two lattices). Also, there are rules for reducing the formal context by safely removing specific rows 
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or columns, which can be especially useful when dealing with very large formal contexts. Again, concept lattices 
obtained from the reduced formal context and the original formal context are isomorphic [5]. 

This is one of the simplest algorithms for generating concept lattices: 

1. compute extension Ext(X,Y,I)={B |B Y} 
2. for A Ext(X,Y,I) find A,A  

There are also various more advanced and efficient algorithms for computing concept lattices. Less complex 
algorithms take the formal context X,Y,I  and generate only the structure B(X,Y,I) (list of all formal concepts) as an 
output. From this structure we can infer the hierarchy between the formal concepts and obtain the concept lattice. 
Complex algorithms are more efficient because they directly produce the concept lattice B(X,Y,I),  as an output. 

B. Ganter has published in 1987 NextClosure algorithm [10], the basic algorithm for computing of structure 
B(X,Y,I). As an input algorithm takes the formal context X,Y,I , and as an output algorithm produces Int(X,Y,I) – 
lexicographically ordered list of all intensions from the formal context. Structure B(X,Y,I) can be reconstructed from 
that list because B(X,Y,I)={ B ,B  | B Int(X,Y,I)}. Finally, by applying Definition 4 we can establish all the 
hierarchical relations from the structure B(X,Y,I), which is necessary for generating the concept lattice. 

The Ganter's algorithm uses lexicographic successor theorem, so first we will give necessary definitions and 
formally state that theorem (its proof can be found in [10,5]). 

Definition 6: Attributes A,B Y, i {1,...,n} are lexicographically ordered (A <i B) if and only if: A∩{1,...,i-
1}=B∩{1,...,i-1} where i B– A. 

Definition 7: We define operation A i:=((A∩{1,...,i–1}) {i}  for A Y, i {1,...,n}. 
Theorem 2 (lexicographical successor): 
The least intension B+ larger than B A is given by B+=B i where i is the largest element of Y for which B <i B i 

holds. 
Now we can give the pseudo code of the NextClosure algorithm: 

1. A:= ↓↑; (least intention) 
2. store (A); 
3. while not (A=Y) do 
4.    A:=A+; (lex. successor) 
5.    store(A); 
6. endwhile. 

The time complexity of the NextClosure algorithm using the big O notation is: O(|X|∙|Y|2∙|B(X,Y,I)|). 
In the Fig. 1 we presented a case of a simple concept lattice from a formal context with a smaller number of 

objects and attributes. The size of the concept lattice can grow exponentially with the increase of the formal context, 
and for larger input data sets it can become very dense and illegible. Therefore, we can break up a formal context in 
sections by grouping attributes in smaller sets. After that we can compute concept lattices for every section of the 
formal context separately. It is possible to compute a product of these smaller concept lattices, which gives us a 
clearer overview of the whole concept lattice. Big concept lattices can be simplified by using concept clustering 
techniques. In that case concept lattice shows only those formal concepts which have sufficient support, i.e. greater 
than a given minimum value from a [0,1] interval. Support is calculated similarly to a support measure from 
association rules in data mining: supp(B Y)=|B |/|X|, i.e. support of a set of attributes is a number of all objects with 
those attributes divided by the total number of objects in the formal context. Therefore we can reduce and simplify 
concept lattice by increasing the minimal support. 

From the concept lattice or the formal context itself we can explore attribute interdependencies or attribute 
implications – e.g. "integer divisible by 3 and 4 is also divisible by 1, 2, 6 and 12". Attribute implications can be 
directly read from the concept lattice, because every formal concept necessarily contains all the attributes from all its 
superconcepts. Nevertheless we can formally define attribute implications as a link between the FCA method and 
formal logic. Determining the attribute implications is especially useful when the formal context is very large and 
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the concept lattice is dense and hard to read. Then we can find a minimum set of all attribute implications which are 
true in that formal context. 

Definition 8: Attribute implication over a non-empty attribute set Y is defined by expression A B where A Y 
and B Y. 

Definition 9: Attribute implication A B over set Y is valid (true) in a set M Y if and only if implication A M  
B M holds. 

Let set M consist of only one row in the formal context (e.g. set of all attributes of an object x: x ). Then we 
check the validity of attribute implication A B, i.e. if an object has all attributes from A then it has all attributes 
from B. If this implication is true then we write ||A B||M=1, and ||A B||M=0 otherwise. It is interesting to determine 
the validity of ||A B|| X,Y,I , attribute implication over the entire formal context. This implication is true, 
||A B|| X,Y,I =1, if and only if for every row (object) of the formal context ||A B||M=1. Furthermore A B is true in 
the formal context if and only if A B  and B A  holds. Here we must discuss one problem – the possibility of 
finding redundant attribute implications. One way of solving that problem is to determine the theory and the model 
of the formal context. The theory contains a set of attribute implications over the formal context. Theory T can be 
made nonredundant, so that it does not contain superfluous implications which just follow from other basic 
implications. Theory model M represents an attribute subset M of a formal context in which every implication from 
the theory T is true. The set of all these models of theory T is denoted by Mod(T) and it is formally defined as: 
Mod(T)={M Y | A B T: ||A B||M=1}. 

Definition 10: Attribute implication A B semantically follows from the theory (T╞A B) if and only if A B is 
true in every model M of theory T. 

Therefore if we want to check if an attribute implication semantically follows from a theory T, we must find 
Mod(T) (set of all models of theory T) and for its every element check if the implication is true. 

We can also, by applying simple deduction rules, directly infer new attribute implications over the theory T, 
without the need to check their validity in the set Mod(T). To accomplish this FCA method uses Armstrong's rules 
which were introduced in the relational database designing for determining functional dependencies [13,5]. There 
are two basic inference rules:  

ABA
 and 

DCA
DCBBA ,

. 

But we can also use these useful derived rules:  

AA
, 

BCA
BA

, 
CBA

CABA ,
, 

BA
CBA

 and 
CA

CBBA ,
. 

Proof of a new attribute implication A B from theory T is written as a sequence of implications which are 
obtained by successively using these deduction rules. This way we can show that A B syntactically follows from 
the theory T (T├A B). As these specified deduction rules are sound and syntactically and semantically complete, 
we must note that the following important equivalence is also true: T├A B  T╞A B. Theory T is syntactically 
closed if it contains all attribute implication which can be derived from T. Furthermore, if the theory T is 
syntactically closed then it is also semantically closed (and vice versa). After the syntactically (and semantically) 
closed set of theory T of a formal context X,Y,I  is found it can be shown that the set of all theory models is 
identical to the set of all intentions of a concept lattice: Mod(T)=Int(X,Y,I). 

There is also a more efficient way of checking if an attribute implication semantically follows for a theory T. 
Instead of checking the validity of implication A B for every model of a theory T, we can check if it is true only 
for CMod(T)(A) – the smallest model of theory T which contains attribute set A (antecedent of implication A B). If 
the whole set of all models of theory T is not known, we can compute, using various known algorithms, only that 
smallest model, which we will use for checking if ||A B||CMod(T)(A)=1.
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As we already mentioned we can ensure that the theory T is nonredundant, namely that there are no redundant 
implications which can be inferred using deduction rules. Theory T of a formal context X,Y,I  is complete if and 
only if its every valid attribute implication follows from theory T. Also the theory T is complete if 
Mod(T)=Int(X,Y,I) is true. Theory T is nonredundant if it is complete, and if after removing any implication it 
would not semantically follow from theory T. Algorithm for removing redundant implications checks if an 
implication is still a semantic consequence of theory T after we delete it from the theory T. If the condition is met, 
the algorithm continues until no such implication is found, i.e. until the theory T becomes nonredundant. 

Researchers have devised multiple complex and advanced algorithms for the computation of nonredundant basis 
of formal context theory, such as Guigues and Duquenne's algorithm [9,11]. 

3. Topological sorting 

Concept lattice with the partial order B(X,Y,I),  is a directed acyclic graph (DAG) whose nodes are formal 
concepts connected by directed edges (always from superconcepts to subconcepts). Therefore, we can analyze 
concept lattices using various algorithms and techniques from the field of graph theory. It can be useful to find a 
linear sorted list of formal concepts, with regard to all subconcept-superconcept relations between them. The task 
can be solved using known algorithms for topological sorting. These algorithms provide a linear sorted list in a way 
that for every edge uv of the directed acyclic graph G node u is added to the sorted list before node v. That means 
that every node enters linear sorted list only after all its parent nodes are in the list or if it doesn't have any parent 
nodes. Stated more formally, topological sorting algorithms provide linearly ordered set which corresponds to a 
partial ordered set (e.g. concept lattice). 

There are numerous topological sorting algorithms, but they can all be divided into two groups – the first group 
contains algorithms based on source extracting (nodes with no incoming edges), and the other group consists of 
depth first search (DFS) based algorithms. We will describe the basic principles behind both types of algorithms.  

Source extracting algorithms start by looking for node(s) with no incoming edges, erase them (along with their 
outgoing edges) and add them to the list. These two steps are repeated until the graph is empty and the linear sorted 
list of nodes is full [12,14]. 

Depth first search based algorithms use DFS method for traversing the graph (exploring graph from the starting 
node along every edge before backtracking) and notes the order of fully explored nodes. Finally, by reversing the list 
of fully explored nodes we obtain a linear sorted list of nodes [12,14]. 

Implementations of these algorithms can be more complex, e.g. they also check for cycles, and if there are cycles 
the sorting ends immediately, because directed cyclic graphs (DCG) cannot be topologically sorted. The time 
complexity of these algorithms is O(|V|+|E|) in big O notation, meaning it is linearly dependent on the number of 
nodes and edges. 

It is possible to get multiple different correct final orders of nodes - the solution is not unique. But if a graph has 
a directed Hamiltonian path (spanning path - visits every node exactly once) every topological sorting algorithm will 
yield an identical solution [15]. For example, a chain-like concept lattice has a Hamiltonian path, but then the order 
of formal concepts can be directly read from such concept lattice without using special algorithms. 

4. Example of FCA method application 

It was stated in the introduction that the FCA method can be used in various areas. In this example we discuss the 
possibility of using the FCA method in the field of teaching as a support system for designing exams, and 
subsequent analysis of exam results, as well as a useful addition to the e-learning systems.  

Here we focus on a small set of exam tasks, and we try to find their similarities, differences and mutual relations. 
We have picked 10 exam tasks from the Fundamentals of electrical engineering, a class from the freshman year of 
the Bachelor program in the Faculty of electrical engineering and computing, University of Zagreb, in the academic 
year 2010/11. These exam tasks cover the first half of the class' curriculum, i.e. direct current circuits, electrostatics 
and magnetism. We can view exam tasks as objects with their attributes, and that makes them suitable for formal 
concept analysis. In this case the formal context consists of 10 exam tasks - objects, which are described with 20 
different attributes. As stated before, we denote that an object has a certain attribute by placing an "X" mark in the 
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formal context matrix on the intersection of object's row and attribute's column. This formal context for the FCA 
method is shown in the Table 1. 

Table 1. Formal context of a Fundamentals of E.E. midterm exam   
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T1 X X X X 
T2 X X 
T3 X X X X X X 
T4 X X X X X X X X X X X 
T5 X X X X X X X X 
T6 X X X X X X X X X X 
T7 X X X X X X X X X 
T8 X X X X X X X X X 
T9 X X X X X X X X X 

T10 X X X X 
 
Using various tools (Lattice Miner 1.4 and Concept Explorer 1.3 – Java applications under Windows; Concepts 

0.3 and Graphplace – programs under Linux) we will construct a concept lattice from the formal context in the 
Table 1. 

We must stress that this kind of analysis could be very useful in e-learning systems for automated generation of 
homework assignments and exams. When the instructor sets the exam requirements (e.g. number of exam variations, 
number of questions, maximum number of different concepts exam can cover, which lessons exam covers), and the 
system would generate any number of requested exams from the questions/tasks database. FCA method can 
facilitate this process, because it would be very hard and time consuming to infer all the concepts and their 
superconcept–subconcept relationships only by using complex SQL queries on the relational database. But it also 
must be noted that, as a prerequisite for using FCA method, all the questions/tasks in the database must be 
semantically described with a list of their attributes. Manual assignment of attributes in a large questions' database is 
evidently very hard and inefficient, so it is important to find feasible ways of automating this job. In the field of 
intelligent tutoring systems some important advances have already been made towards an automated test generation 
from ontology–based knowledge [18,20]. 

5. Results 

All the tools we used have conducted the FCA method similarly, and all have given, as expected, isomorphic 
concept lattices and the same number of identified concepts – 24. In the Fig. 2 the concept lattice generated by the 
program Concept Explorer is shown. For a clearer overview we have chosen the layout with the condensed 
information about every formal concept, i.e. the attributes are explicitly shown only in the first concept (implicitly 
they are also in all subsequent sub-concepts), and for each concept only a number and the percentage of their objects 
(exam tasks) instead of extensive object lists. 

We can see from the concept lattice graphical layout, just like from the Table 1, that a vast majority of tasks 
requires students to know various different concepts. The only exception is the task T2. For its solution students 
only need to know two different concepts (electrical resistance and conductivity, which are related through a single 



1265 Frano Škopljanac-Mačina and Bruno Blašković  /  Procedia Engineering   69  ( 2014 )  1258 – 1267 

simple formula). In this case most of the exam tasks covered the direct current circuit theory, described with more 
attributes, and fewer (3/10) covered the theory of electrostatics and magnetism, described with fewer attributes. That 
made the resulting concept lattice asymmetric, with a dense left branch with direct circuit concepts and sparse right 
branch with electrostatics and magnetism concepts. It is clear that by increasing object and attribute sets we would 
find more new concepts (e.g. by defining new, more detailed attributes such as simple/complex direct current circuit 
or homogenous/heterogenous electric field). 

 

 

Fig. 2. concept lattice for the exam questions example 

Some tools (Lattice Miner 1.4, Concept Explorer 1.3) generate not only the concept lattice, but also the list of 
found dependencies between the attributes, i.e. attribute implications or association rules. With the minimal support 
of just 10% (in this case only one object) and minimal confidence of 100% (only the clear implications between the 
attributes in the formal context) we found 42 association rules. Table 2 shows a list of 11 association rules with the 
greatest support (a minimal support of at least 50 %), e.g. rule 3 {Ohm's law} {DC voltage, el. potential, el. 
resistance, direct current} (has a support of exactly 60% – it is true for 6 different tasks). Also, theory T contains 29 
implications which represent the Guigues-Duquenne (irreducible) basis of the given domain. 
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Table 2. List of association rules (attribute implications) with a minimal support of 50% 

 Attribute implications Support 

1. {A18}=>{A2, A7} 70.0% 

2. {A2, A7}=>{A18} 70.0% 

3. {A16}=>{A18, A2, A6, A7} 60.0% 

4. {A18, A6}=>{A16, A2, A7} 60.0% 

5. {A2, A6}=>{A16, A18, A7} 60.0% 

6. {A6, A7}=>{A16, A18, A2} 60.0% 

7. {A19}=>{A18, A2, A7} 60.0% 

8. {A11}=>{A16, A17, A18, A19, A2, A6, A7} 50.0% 

9. {A17}=>{A11, A16, A18, A19, A2, A6, A7} 50.0% 

10. {A16, A19}=>{A11, A17, A18, A2, A6, A7} 50.0% 

11. {A19, A6}=>{A11, A16, A17, A18, A2, A7} 50.0% 

 
We can also use concept lattice when we analyze the students' results on this exam. Overall exam score was 49%, 

or 40% when we take into account the negative points for wrong answers. All the tasks had a ideal completion rate 
of 40% – 60%, except for the tasks T6 and T4. Task T6 was a typical exam task and it had the best completion rate 
(64%), even though it covered 12 formal concepts. Task T4 was unorthodox, it covered also 12 formal concepts, but 
it required more understanding and carefulness. That made T4 the hardest task, with a completion rate of only 13%. 
Nevertheless, it can be argued that the tasks which cover more formal concepts will be more demanding for the 
students. Also, we should take other factors into considerations when analyzing exam results, e.g. students' previous 
results, exam environment [19]. 

As we discussed previously, the concept lattice is an acyclic directed graph (on the Fig. 2 all the edges are 
directed top to bottom, from the superconcepts to the subconcepts) so it is possible to apply a topological sorting 
algorithm (e.g. Linux program tsort) to the concept lattice in the Fig. 2. As a result, we got a list of all 24 found 
concepts, sorted from the superconcepts to the subconcepts, with respect to all relations between the concepts. These 
sorted concept lists can be used for choosing the best order of questions for exams. Also, it could be used in the e-
learning systems, e.g. if a student fails to answer a question from the given sequence the system would redirect him 
to additional questions from that lesson and related previous lessons. And only when the student answers correctly 
to those questions it would be possible to proceed with the learning process. 

In this example, using the program tsort we got two, almost identical, optimal orders of exam tasks. First optimal 
order of tasks is: T2 – T1 – T10 – T3 – T5 – T7 – T8 – T9 – T6 – T4, and the second is:  T2 – T1 – T10 – T3 – T5 
– T7 – T9 – T8 – T6 – T4. It is evident that the calculated optimal order of tasks is quite different from their actual 
order on the midterm exam (as shown in Table 1: T1 – T2 – T3 – T4 – T5 – T6 – T7 – T8 – T9 – T10). As 
expected, tasks with the greater extent are positioned near the end of the list, and the tasks with the smaller extent 
are positioned near the start of the list. It is worth nothing that the last task (T4) had the worst completion rate – only 
13%, arguably because of many concepts it covers. Also, the first task (T2) had one of the best completion rates – 
58%, because it was covered by only 3 formal concepts, which makes it one of the easiest tasks.  

Thus, it is evident that the FCA method in this example resulted with a clear overview of the exam questions 
classification, which can be further used as a first step in the engineering of a complete ontology of this presented 
subdomain or even the whole domain of Fundamentals of electrical engineering theory. 

6. Conclusion and future work 

In this paper we have presented key ideas and described the main features of the FCA method. Finally, we have 
given a brief example showing the application of this method to the domain of computer aided learning, and we 
discussed its main goal, i.e. comprehensive categorization and classification of the domain knowledge. We have 
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indicated our principal paths for utilizing the FCA method – to facilitate the exam creation and to integrate it into   
e-learning systems.  

The main advantages of the FCA method are the simplicity of preparing large input data sets for analysis, and 
that the analysis can result with the clear visual overview of the input domain and with a list of important attribute 
implications. Furthermore, the ongoing research work in this field is focused on the automatic creation of the input 
formal context from the text and the possibility of automatic ontology engineering. Also, there are proposals for 
linking the FCA method and context graphs and conceptual graphs, and also, the new temporal concept analysis is 
being developed by introducing the temporal attributes to the formal concept [21,6,7,8]. 

The goal of our future research work is to find concrete evidence which will prove the validity of the idea of 
using this method in the field of computer aided learning. We will try to find ways for constructing ontologies by 
combining the FCA method and description logic. Also, our intention is to use FCA method for finding optimal 
learning paths and for the quality control of the exam materials so they cover as many concepts form the given 
domain as possible. 

References 

 [1] R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival editor: Ordered Sets, Dordrecht-Boston: 
Reidel; 1982, pp. 445–470. 

[2] B. Ganter, G. Stumme, R. Wille editors. Formal Concept Analysis - Foundations and Applications. Berlin Heidelberg: Springer-Verlag; 2005. 
[3] K.E. Wolff. A first course in Formal Concept Analysis. In: F. Faulbaum editor, StatSoft '93, Gustav Fischer Verlag, pp. 429–438. 
[4] B. Ganter, R. Wille. Formal Concept Analysis- Mathematical Foundations. Berlin: Springer-Verlag; 1999. 
[5] R. Belohlavek. Introduction to Formal Concept Analysis. belohlavek.inf.upol.cz/vyuka/IntroFCA.pdf, Olomuc; 2008. 
[6] B. Ganter, R. Godin editors. Formal Concept Analysis, Third International Conference, ICFCA 2005. Springer, 2005. 
[7] S.O. Kuznetsov, S. Schmidt editors. Formal Concept Analysis, Fifth International Conference, ICFCA 2007. Springer, 2007. 
[8] S. Ferré, S. Rudolph editors. Formal Concept Analysis, Seventh International Conference, ICFCA 2009. Springer, 2009. 
[9] S.O. Kuznetsov. On the intractability of computing the Duquenne-Guigues base. J. Univers. Comput. Sci. 2004;10(8):927–933. 
[10] B. Ganter. Algorithmen zur Formalen Begriffsanalyse. In: B. Ganter, R. Wille, K. E. Wolff editors. Beiträge zur Begriffsanalyse, B. I. 

Wissenschaftsverlag; 1987, pp. 241–254. 
[11] V. Duquenne, J.-L. Guigues. Famille minimale d’implications informatives resultant d’un tableau de donnes binaires. Math. et Sci. Hum. 

1986;24(95):5–18. 
[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Section 22.4: Topological sort. In: Introduction to Algorithms (2nd ed.), MIT Press and 

McGraw-Hill; 2001, pp. 549–552. 
[13] W.W. Armstrong. Dependency structures of data base relationships. In: J.L. Rosenfeld, H. Freeman editors. Information Processing 74: 

Proceedings of IFIP Congress 74, North Holland; 1974, pp. 580–583. 
[14] S.S. Skiena. Section 15.2: Topological Sorting. In: The Algorithm Design Manual (2nd ed.), London: Springer-Verlag; 2008, pp. 481–483. 
[15] J.A. Bondy, U.S.R. Murty. Graph Theory. New York: Springer; 2008. 
[16] D. Žubrnić. Diskretna matematika. Zagreb: Element; 2001. 
[17] T.S. Blyth. Lattices and Ordered Algebraic Structures. London: Springer-Verlag; 2005. 
[18] B. Žitko, S. Stankov, M. Rosić, A. Grubišić. Dynamic test generation over ontology-based knowledge representation in authoring shell. 

Expert Systems with Applications 2009;36(4):8185-8196. 
[19] M. Vranić, D. Pintar, Z. Skočir. Data Mining and Statistical Analyses for High Education Improvement. In: D. Čišić, Ž. Hutinski et al. 

editors. Proceedings of 31st international convention on information and communication technology, electronics and microelectronics - 
MIPRO 2008, Zagreb, 2008, pp. 164-169. 

[20] T. Alsubait, B. Parsia, U. Sattler. Next generation of e-assessment: automatic generation of questions. Int. J. of Technology Enhanced 
Learning 2012;4(3-4):156-171. 

[21] M. Clark, Y. Kim, U. Kruschwitz, D. Song et al. Automatically structuring domain knowledge from text: An overview of current research. 
Inf. Process. Manage. 2012;48:552-568. 

 


