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Abstract 

Binding concrete web services to the tasks involved in an orchestration model is an important step in dynamic web 
service composition. In our previous work on automated service binding, we have described a method of combining 
a powerful technique for computing the QoS of a composite service with our own approach of expressing 
preferences related to the trade-offs between the various QoS parameters of a composite service. In this paper, we 
introduce a genetic algorithm that finds the best mapping of concrete services to the tasks involved in the 
composition. The algorithm uses the method presented in our previous work in order to estimate the fitness of the 
mappings that make up a population of candidate solutions. We describe how the challenges posed by the use of this 
method have influenced the design of our algorithm and report the experimental results showing the effectiveness of 
our approach. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of DAAAM International Vienna. 
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1. Introduction 

Composite web services that achieve advanced functionality can be constructed by integrating individual web 
services. Since web service composition is a complex task, there are ongoing efforts to automate this process. Web 
services have a dynamic nature: at every moment, a service may cease to exist or a new one may become available. 
Non-functional characteristics, such as the quality of service (QoS), are also subject to frequent changes. Therefore, 
much research is directed toward automated, dynamic web service composition approaches. 

Web service composition is a complex task, which involves three challenging steps: (1) composite web service 
specification, (2) selection of the component web services and (3) execution of the composite web services [1]. In 
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this paper, we focus on the second step, whose goal is to bind concrete web services to the activities involved in the 
composition, in order to produce the most suitable composite service.  

In our previous work [2], we have presented a binding-as-a-service (BaaS) approach that combines two powerful 
technologies. The first one is our method of dealing with QoS preferences [3], which offers great flexibility in 
managing trade-offs, but is at the same time very intuitive. The second one is the QoS aggregation method of Yang 
et al. [4], which has the major advantage of being able to deal with unstructured orchestration models. 

Optimizing the aggregated QoS of a composite service is an NP-hard problem. An exhaustive search is feasible 
only for simple compositions models, having a small number of tasks and a small number of available services for 
each task. We introduce a genetic algorithm that uses the above mentioned approach in order to find the best 
mapping of concrete services to the tasks involved in the service composition. The experimental results show the 
effectiveness of our algorithm. 

The rest of this paper is organized as follows: Section 2 discusses the problem of estimating the QoS of a 
composite service and presents the aggregation technique chosen in this work. Section 3 describes our conditional 
lexicographic approach for expressing QoS preferences. Section 4 details our genetic algorithm and section 5 
presents the experimental results. The last section concludes the paper. 

2. The aggregated QoS of composite services 

Various solutions have been proposed for estimating the aggregated QoS of a composite service, but they differ 
in the restrictions imposed on the topology of the composition. Most of them are limited to orchestration models that 
can be represented as well-structured workflows. Yang et al. [4] have introduced a method that overcomes these 
restrictions. This method, which is used in our binding-as-a-service (BaaS) approach, is presented in the remaining 
of this section. 

The input of this method is an orchestration model together with a binding that maps tasks to component services. 
An orchestration model is a directed graph with execution probabilities attached to its edges. The orchestration 
models are decomposed into orchestration components, which are subgraphs with a single-entry and single-exit 
point. The QoS is computed in a bottom-up manner for each orchestration component. For well-structured 
orchestration models, different aggregation formulas are provided depending on the type of the QoS attribute, which 
can be classified into three categories: critical path, additive and multiplicative. 

A preliminary step of the QoS aggregation method is to use the block-structuring technique introduced in [5] to 
transform an unstructured orchestration model into a maximally-structured orchestration model. 

The components that are irreducible using this technique are called rigid components and they are of two types: 
irreducible Directed Acyclic Graphs (DAG) and irreducible multiple-entry, multiple-exit (MEME) loops. The 
authors of [4] provide an algorithm that transforms irreducible DAG components in equivalent choice components. 
Irreducible MEME loops can be transformed using the block-structuring technique into equivalent rigid components 
where the concurrency is fully encapsulated within child components. For these equivalent components, the 
expected number of times that a node in the MEME loop is visited can be calculated using standard methods. This 
allows computing the QoS of the irreducible component by applying the aggregation formulas characteristic to each 
category of QoS parameters. 

3. QoSPref - The conditional lexicographic approach for the elicitation of QoS Preferences 

Our approach to articulate the QoS preferences [3] is based on the observation that, when trying to find a set of 
rules allowing them to choose between several alternatives, people start by ranking their preferences, in accordance 
with their perceived importance. This action is equivalent to imposing a lexicographic order on the different criteria 
that have to be considered. Since using such a strict hierarchy is usually not sufficient to capture people's real 
preferences, they introduce additional rules that change the criteria priorities when some specific condition is met. 
Our method establishes a total order on the set of alternatives, by attaching conditions to lexicographic preferences 
and provides a preference specification language that can be used for authoring QoS preferences. 

We illustrate our approach and the use of its associated specification language by considering an online trading 
system that offers services for trading various financial instruments. One of these services allows customers to buy 
domestic and foreign stocks. We consider that the following QoS attributes are interesting for the online trading 
system: execution time, cost, and reliability.  
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In order to be able to dynamically bind component services to the tasks specified in the composition model of the 
stock buying service, the online trading system must have an automated method of comparing composite services 
based on their QoS. The details provided in the next two paragraphs illustrate why this is not a trivial task. 

The executives of this system try to maximize their profit, therefore they see the cost as the most important QoS 
parameter. However, they are willing to ignore small cost differences (not exceeding 10 cents) if the composite 
service with a higher cost has better values for reliability and execution time. 

For the customers of this system, it is very important that trading orders are executed as soon as possible. 
Therefore, the online trading systems guarantees that the execution time of its stock buying service does not exceed 
30 seconds. For every violation of this agreement, the owners of the online trading system must pay a penalty 
proportional with the delay. This means that, when comparing two composite services, the execution time becomes 
the most important parameter if at least one of the compared services has an execution time exceeding the 30 
seconds limit. 

In order to be able to articulate preferences for scenarios like the one above, our specification language provides 
four unary preference operators, which are shown in the table below : 

Table 1. Preference operators 

Preference operator Meaning 

AT_LEAST_ONE(condition) condition(service1) OR condition(service2) 
EXACTLY_ONE(condition) condition(service1) XOR condition(service2) 
DIFF(attribute) |service1.attribute - service2.attribute| 
ALL(condition) condition(service1) AND condition(service2) 

 
The first three operators take as argument a boolean formula, which usually involves one or more QoS attributes. 

The formula is evaluated twice, once for each of  the web services to be compared. The two resulting boolean values 
are passed as arguments to the boolean operator (OR, XOR, or AND) associated with the given preference operator, 
in order to obtain the return value. The preference operator DIFF takes as argument a QoS attribute and returns the 
modulus of the difference of its corresponding values from the two web services compared.  

Our specification language uses a preferences block that includes a comma separated list of entries, called 
preference rules, listed in the order of their importance.  

A preference rule has three components: an optional condition, an attribute indicating the QoS dimension used 
in comparisons and a direction flag stating which values should be considered better. 

In our specification language, the preferences corresponding to the above described scenario can be articulated 
as shown in Fig. 1. 

 
preferences { 
 [EXACTLY_ONE(execTime  > 30)] execTime : low, 
 [DIFF(cost) > 10] cost : low, 
 reliability: high, 
 execTime: low, 
 cost: low 
} 

Fig. 1. A specification of preferences. 

In what follows, we use the notation  to indicate that the web service  is preferred to the web service , 
and the notation  to indicate that the service  is indifferent to the web service . Additionally, we 
introduce the notation  to indicate that the web service  is preferred to the web service  and that the 
preference rule  has been decisive in establishing this relationship. We also introduce the complementary operators 

 and , defined by the following relations: 

, iff  

, iff  
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An algorithm for comparing two web services based on the preferences expressed using our conditional 
lexicographic approach  is shown in Fig. 2. 

1 function compareServices(service1, service2, preferences) 

2  for i ← 0 .. length(preferences) - 1 do 
3   cond ← preferences[i].condition 
4   attr ← preferences[i].attribute 
5   dir ← preferences[i].direction 

6   if cond = null OR cond(service1, service2)=true then 

7    result ← compare(service1.attr, service2.attr, dir) 

8    if result ≠ 0 then 
9     return {result, i} 
10    end if 
11   end if 
12  end for 
13  return null 
14 end function 

Fig. 2. Pairwise comparison of two web services. 

The algorithm  examines all entries in the preferences block in the order in which they appear (line 2). If the 
current preference rule has no attached condition or the attached condition evaluates to true (line 6), the values 
corresponding to the attribute specified by this entry are compared (line 7). The compare function returns a 
numerical value that is positive if the first argument is better, negative if the second argument is better and 0 if the 
arguments are equal. If the attribute values are not equal (line 8), the algorithm returns a tuple containing the result 
of the current comparison and the index of the preference rule that has been decisive in establishing the preference 
relationship (line 9). Otherwise, the algorithm continues its execution with the next preference rule. A null return 
value (line 13) indicates an indifference relation between the two web services, while a not-null tuple identifies a 
relation of type  or  between them. 

An important feature of our specification language is its ability to capture intransitive preference. As a 
consequence of this, the pairwise comparison of the web service alternatives is not sufficient to impose a total order 
on these services. We illustrate this by considering a set of 5 composite web services with the aggregated QoS 
values specified in Table 2. 

Table 2. Relevant QoS attribute values. 

 WS1 WS2 WS3 WS4 WS5 
execTime   27   24   31   28   26 
cost 536 548 520 525 540 
reliability 0.97 0.96 0.98 0.98 0.96 

 

Using the preferences specified in Fig. 1, the relations identified by the pairwise comparison of the 5 web 
services considered in our example are depicted in Table 3, where header notations use the format  to indicate 
that the corresponding symbol in the line below represents the preference relation between the web service WSi and 
the web service WSj.  

Table 3. Pairwise comparison of the 5 web services. 

1/2 1/3 1/4 1/5 2/3 2/4 2/5 3/4 3/5 4/5 
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In the above table the following intransitive relationships can be observed: 
WS1  WS2  WS5 
WS5  WS1 

In order to obtain a total order on the set of web service alternatives, we attach to each web service  a score 
vector of integer values: , where  is the number of preference rules. The algorithm used to compute the 
score vectors is presented in Fig. 3, where  denotes the number of web service alternatives. 

 

 procedure createScoreVectors () 
  for i ← 1 .. n do 
   for k ← 1 .. r do 

 
    ← number of times service WSi is preferred to another web service 
           due to the decisive rule k (i.e., due to a   relation) 

  end for 
    ← number of times service WSi is indifferent to another web service. 

  end for 
 end procedure 

Fig. 3. Procedure to create the score vectors. 

For the 5 web service alternatives considered in our example, the corresponding score vectors computed with the 
above algorithm are presented in Fig. 4. 

 
       

WS1 1 1 0 0 0 0 
       

WS2 1 0 0 1 0 0 
       

WS3 0 0 0 0 0 0 
       

WS4 1 3 0 0 0 0 
       

WS5 1 0 1 0 0 0 

Fig. 4. Score vectors of the 5 web service alternatives. 

Using the score vectors, we are able to provide an algorithm for the ranking of web service alternatives. This 
algorithm is based on the function compareScores, described in pseudocode in Fig. 5. Again,  is used to denote the 
number of preference rules. The function takes as arguments two score vectors and returns a numerical value that is 
positive if the web service corresponding to the first score vector is preferred, negative if the web service 
corresponding to the second score vector is preferred and 0 if the corresponding web services are indifferent to each 
other. 
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1 function compareScores(V1, V2) 

2  

3  

4  if count1 ≠ count2 then 
5   return count1 - count2 
6  end if 
7  for i ← 1 .. r + 1 do 
8   if   ≠  then 
9    return  

10   end if 
11  end for 
12  return 0 
13 end function 

Fig. 5. Function for score vector comparison. 

For each of the two corresponding web services, the function computes the number of times it has been preferred 
to other web services (lines 2, 3). This computation does not take into account the number of times a web service 
has been found to be indifferent to another one (hence the sum is taken up to the value , not . 

If the previously computed values count1 and count2 are not equal (line 4), the web service with the higher value 
is chosen as the better one (line 5).  

Otherwise, the algorithm scans each position in the score vectors (line 7) and if it finds different values, the web 
service corresponding to the higher value is chosen as the better one. The scanning of the values in the vector scores 
starts with the position corresponding to the first preference rule, because this is considered the most important one, 
and it ends with the position corresponding to the number of indifference relations (i.e., ), because this is 
considered the least important one. If the score vectors are identical, the function returns 0 (line 12) 

In contrast with the function compareServices presented in Fig. 2, the function compareScores induces a total 
order on the set of web service alternatives, thus allowing us to rank them accordingly. Using this algorithm, the 5 
web service alternatives considered in our example will be ranked in the following order: 
 (WS4, WS1, WS5, WS2, WS3), 
with WS4 being the best alternative. 

4. Genetic algorithm 

In this section, we describe the genetic algorithm used to find the best mapping of component services to tasks. 
The purpose of this algorithm is to be incorporated in a framework implementing our binding-as-a-service (BaaS) 
approach. A web service request sent to our BaaS provider must contain the following information:  

 the orchestration model; 
 the list of QoS attributes; 
 for each task in the orchestration model, a list of concrete web services offering the required 

functionality; 
 the QoS constraints; 
 the QoS preferences. 

 
The orchestration model is represented as a workflow with execution probabilities attached to its edges. If 

probabilities are missing, our implementation will assign default probabilities. Edges starting from an XOR gateway 
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are assigned a probability of , where  is the number of outgoing edges of the given XOR gateway. All other 
edges are assigned a probability of . 

The list of QoS attributes must contain information about the aggregation category of each attribute. 
The list of concrete web services offering the required functionality of a given task must specify for each 

concrete web service its QoS values.  
In the following paragraphs, we describe the algorithm used to find the best solution for a given BaaS request. A 

genetic algorithm maintains a population of chromosomes, where each chromosome encodes a possible solution of 
the problem. In our case, a chromosome encodes a possible mapping of web services to tasks, as shown in Fig. 6. 
The chromosome is structured as a vector of  elements, where  is the number of tasks in the orchestration model. 
The value of the element  in this vector is an integer indicating the index of the component service assigned to the 
task . For example, in Fig. 6, there are 3 web services implementing the functionality of task 5: ,  and 

. The solution encoded by the chromosome maps the second possible service ( ) to task 5. Therefore, the 
value of the 5th element of the chromosome is 2. 

 

 
 
Bla. 
 
Our genetic algorithm uses the two-point crossover operator for recombination. Mutations are performed by 

randomly choosing a task and randomly changing the index of its assigned component service. 
A peculiarity of our approach for preference specification is that the fitness of a solution can only be evaluated in 

the context of a given population, because the ranking algorithm performs pairwise comparisons of all candidate 
solutions. Therefore, it is not possible to offer an absolute value for the fitness of a solution. Our genetic algorithm 
computes the fitness of a solution based on its ranking in the current population, by assigning the maximum value to 
the top ranking solution and the minimum value to the solution at the last position in the ranking. The pseudocode of 
the fitness evaluation procedure is given in Fig. 7. 

 

task 1 X

task 3 

task 5 X 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

5 2 1 3 2 Chromosome 

task 2 task 4 

Fig. 6. The structure of a chromosome encoding a possible mapping of web services to tasks. 
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 procedure evaluateFitness() 

 
 for i ← 1 .. n do 
  qos[i] ← computeAggregateQoS(solution[i]) 

 

 end for 
 for i ← 1 .. n-1 do 
  for j ← i+1 .. n do 
   compResult[i][j] ← compareServices(solution[i], solution[j]) 
  end for 
 end for 
 createScoreVectors() 
 rankList ←  list of solutions sorted using compareScores() 
 for i ← 1 .. n do 

   fitness[i] ← populationSize - (index of solution[i] in rankList) 

  end for 
 end procedure 

Fig. 7. Procedure for evaluating the fitness of the candidate solutions. 

 
The computeAggregateQoS() function in the pseudocode above uses the method described in section 2 in order 

to estimate the aggregated cost of a composite service based on the QoS values of its component services. The 
function compareServices has been defined in Fig. 2, the function createScoreVectors in Fig. 3, and the function 
compareScores in Fig. 5. The populationSize is a configurable parameter of the algorithm. In the next section we 
show experimental results for different values of populationSize.  

Several conditions may be combined in order to trigger the termination of our genetic algorithm: 

 a maximum number of generations has been reached; 
 a maximum time limit for running has been reached; 
 there has been no solution improvement during the last  generations. 

Since there is no absolute value for the fitness of a solution, checking the occurrence of the third condition is not 
a trivial operation. In order to solve this issue, the genetic algorithm maintains a list of best-so-far solutions. At the 
end of each generation, the best solution in the current population is searched in the list of best-so-far solutions. If 
not already present, it is added to this list and ranked against the other elements. An improvement has occurred only 
if the current best solution is at the top of the resulting ranking.  The size of the list of best-so-far solutions is limited 
by a value configured as a parameter of the algorithm. If, as a consequence of adding the current best solution to the 
list of best-so-far solutions, its size exceeds the limit, the element with worst ranking will be removed.  

The prototype implementation of our algorithm is written in Java and it is available as open source at: 
http://baas.sourceforge.net/. 

5. Experimental results 

In our experiments, we have used 21 orchestration models from the public Oryx repository (available at 
https://code.google.com/p/oryx-editor/) and 10 from the IBM BIT process library (available at 
http://www.zurich.ibm.com/csc/bit/downloads.html). The number of tasks in the considered models is between 5 
and 20, while the number of gateways varies between 0 and 16. 

We have set the termination condition by 20 generations without solution improvement and the maximum size of 
the best-so-far list to 10. 

We have performed experiments with the following population sizes: 20, 50 and 100. 
For each population size and each orchestration model we have performed 100 runs, using a different set of 

candidate web services for each run. Each set of candidate services has been created by generating between 2 and 7 
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service alternatives for each task in the current orchestration model. 
For each orchestration model and each population size, the average number of generations is given in       Table 

4. 

      Table 4. Experimental results. 

Orchestration 
model 

Number of 
tasks 

Number of 
Gateways 

Average number of generations 
(population=20) (population=50) (population=100) 

1 5 4 9.48 7.17 3.43 
2 6 0 11.36 7.00 5.57 
3 6 0 10.86 6.30 4.57 
4 6 0 11.9 7.60 5.17 
5 6 0 11.04 7.43 4.67 
6 6 0 11.8 6.90 5.53 
7 6 4 12.96 7.37 4.63 
8 6 6 13.46 8.17 6.90 
9 6 7 9.92 7.33 5.13 

10 7 5 15.98 8.90 7.37 
11 7 7 15.44 8.23 7.70 
12 8 3 16.92 11.30 8.97 
13 8 3 18.10 13.70 9.70 
14 8 10 27.16 41.67 44.40 
15 9 4 24.38 15.13 11.73 
16 9 4 25.38 57.53 35.20 
17 9 8 19.38 13.03 12.30 
18 9 8 30.56 35.50 41.07 
19 9 10 21.72 13.43 12.40 
20 10 6 21.32 16.27 14.07 
21 10 6 21.12 15.87 12.60 
22 10 9 23.00 16.93 12.17 
23 11 6 25.98 17.33 14.70 
24 11 14 29.08 20.17 14.30 
25 12 5 29.40 20.63 18.53 
26 13 8 30.26 25.23 18.30 
27 13 12 33.24 27.33 23.07 
28 14 4 31.66 22.83 20.00 
29 15 16 21.96 39.30 41.63 
30 18 12 31.64 46.20 38.67 
31 20 5 49.36 29.33 37.63 

 
It can be observed that even a population of 20 individuals is enough to reach the termination condition in less 

than 50 generations. While using larger populations leads in most cases to a lower number of generations, the 
differences are not very significant and, in some cases, such as for the orchestration model 16, a larger population 
may actually lead to worse results. 

Although a correlation between the number of tasks and gateways and the number of generations needed to reach 
the termination condition can be observed, other factors, such as the topology of the orchestration model, seem to 
have also a substantial influence.  

6. Conclusion and future work 

We have introduced a genetic algorithm for finding the best mapping of component services to the tasks 
involved in a service composition. The algorithm estimates the fitness of the mappings that make up a population of 
candidate solutions by using the service binding method described in one of our previous papers. The experimental 
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results show that the algorithm is able to find the best mapping in a few number of generations even when small-
sized populations are used. 

We are currently devising a service composition framework combining our algorithm with a QoS-aware 
semantic selection algorithm that uses an ontology compatible with the preference approach described in this paper. 
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