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Abstract 

Paper shows the general characteristics of graded materials, their previous industrial use and potential use of graded materials in 
the future. In any case, today the use of graded materials is increasing and moving from the laboratory environment into everyday 
use. However, the subsequent processing of the graded material remains the big unknown, and represents a major challenge for 
researchers and industry around the world. It could be said that the study of machinability of these materials is in its infancy and 
in this area are many unanswered questions. Machinability problem of graded materials was undertaken at the Faculty of 
Mechanical Engineering in Maribor. After a radical study of the literature and potential machining processes of graded materials, 
we started with the implementation of cutting processes on the workpiece. This professional paper presents the first results of the 
analysis, which will be used for further research and machinability study of graded materials. Also prediction of cutting forces
with neural network by milling functionally graded material was made. In paper first predicted cutting forces by milling graded 
material are presented. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of DAAAM International Vienna. 
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1. Introduction 

Functionally graded materials (FGM) has been in intensive use for last two decades. The first concepts of graded 
materials were conceived in 1984 during the development of the Japanese space program. Their main feature is the 
non-homogeneous microstructure through whole structure, where every layer has its own microstructure and 
different mechanical properties.  
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Basic material 

Graded material layer (clad layer) 

The most frequently represented scopes of the graded materials are [1, 2, 3]: 

 Aerospace 
 Military industry 
 Medicine 
 Optoelectronics 

In any case, by reducing manufacturing costs in the future is expected that list of areas where graded materials 
are used will be much bigger. The greatest advantage of graded materials is their surface functional quality. 
However the properties of graded materials also depend on the properties of the base material. In most cases, 
hardness of graded material may vary. Surface layer is the hardest and hardness usually linear fall to the softest zone 
of material, which is in the region where basic material and graded layer are mixed, shown in Fig. 1 [4, 5]. 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Schematic view of functionally graded material. 
 

The most common reasons for using graded materials are: 

 High surface hardness 
 Good surface wear resistance 
 Different graded structures dampen vibrations 

Special case of graded materials represents partially graded materials that do not have distinct layers with 
different chemical compositions, but they have a homogeneous chemical composition of the modified 
microstructure. The mechanical properties of these materials are comparable with the properties of the graded 
materials with distinct layers with different chemical composition [1, 2]. 
The largest groups of graded materials are as follows:  

 Bioactive graded materials  
 Tool steel with C, V, Cr and Ti gradients  
 Materials with self-lubricating ability 
 Graded materials with high temperature resistant surface layer 

2. Properties of functionally graded materials 

Graded materials are very innovative product in the field of technology. Also very innovative is their production. 
The most common methods of manufacture graded materials are as follows: 

 The application of thin film coatings (PVD, CVD) 
 Powder metallurgy 
 Centrifugal method of manufacturing graded material 
 Additive fabrication (SLS, LENS, SLM) 
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Properties of graded 
material 

GEOMETRICAL PROPERTIES QUALITATIVE PROPERTIES 
 Hardness 
 Wear resistance 
 Tensile strength 

 Roughness 
 Layer thickness 
 Dilution 

 Cracking 
 Porosity 

   CUTTING PROCESSES 

 Milling 
 Turning 
 Drilling 

MECHANICAL PROPERTIES 

The properties of clad layers are classified in three groups (Fig. 2). Some of those properties may be inter-related. 
The wear resistance can, for instance, be affected by the hardness, the microstructure, the number of cracks and their 
depth and direction, the bonding between base material and substrate, etc. [1, 5, 6]. 

Fig. 2. Properties of graded material. 
 
3. Production of graded material 

Laser cladding is used to improve the surface properties of metallic machine parts. A wide variety of commercial 
metallic or ceramic powders is available. Those powders were developed for the use in plasma and flame spraying. 
They are also fit for use in laser cladding, because the intended functional properties are the same.  

 
 

 
 

 
 
 
 
 
 
 

 
 

 
 
 
 

Fig. 3. Schematic view of LENS process. 
 
A high power laser beam is used to melt metal powder supplied coaxially to the focus of the laser beam through a 

deposition head. The laser beam typically travels through the centre of the head and is focused to a small spot by one 
or more lenses. The x-y table is moved in raster fashion to fabricate each layer of the object (Fig. 3). The head is 
moved up vertically as each layer is completed. Metal powders are delivered and distributed around the 
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circumference of the head either by gravity, or by using a pressurized carrier gas. An inert shroud gas is often used 
to shield the melt pool from atmospheric oxygen for better control of properties, and to promote layer to layer 
adhesion by providing better surface wetting. Test parts used in the experiment were produced with the machine 
Optomec LENS 850-R. Operational parameters for the production of test parts on machine Optomec LENS 850-R 
are shown in Table 1. 

   Table 1. Operational work settings on LENS machine Optomec LENS 850-R. 

Machine settings Value 
Power 580 [W] 
Feed rate 10 [mm/s] 
Amount of filler material 5.8 [g/m] 
Number of layers 4 
Spacing between layers 0.4 
Mark of filler material 1.3343 

4. Artificial neural network (ANN) 

The principal characteristic of neural networks is that they are capable of finding the rule that connects output 
and input parameters, during the process of training. When the neural network is trained, it operates also in 
situations with which it did not encounter during the process of training [7, 8]. 

In this paper, the most commonly used technique; the feed-forward back-propagation neural network is adapted 
for the prediction of cutting forces in milling operation. It consists of an input layer (where the inputs of the problem 
are received), hidden layers (where the relationships between the inputs and outputs are determined) and an output 
layer (which emits the output of the problem). 

The input parameters for the neural network were depth of cut (ap) and feed rate (f), which is shown in Fig. 4. 
The input parameters influenced most on the size of cutting force, which is an output parameter of ANN [9, 10]. 

4.1. Topology of neural network 

The number of neurons in the input layer is defined by the number of input parameters; the input layer includes 
two neurons. The number of neurons in the output layer is the same as the number of output parameters. In our case 
this 3 or 1 output parameters. Output parameters shown in Fig. 4 and Fig. 5 in our case are: 

 components of cutting forces in all three directions of the coordinate system (Fx, Fy, Fz) 
 main cutting force R [11] 

In our case two neural networks with different number of hidden layers were made. Fig. 4 shows the topology of 
first neural network in which output parameters were the components of cutting force (Fx, Fy, Fz) in the directions of 
the coordinate system used by the CNC machine. Feed-forward back-propagation neural network with 4 hidden 
layers was used [12, 13, 14]. 

 
Fig. 4. Feed-forward back-propagation neural network with 4 hidden layers and 3 outputs. 
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Fig. 5 shows the topology of second neural network that was used to predict the main cutting force R. Feed-
forward back-propagation neural network with 4 hidden layers was used. 

 

 
Fig. 5. Feed-forward back-propagation neural network with 4 hidden layers and 1 output. 

5. Experiment realization 

Milling of workpieces made of graded material was on CNC milling machine Heller BEA 01. Material GGG70 
(hardness 23 HRC) was used as the basic material (Fig. 1), while the mixture of the basic material and the feed 
material S-6-5-2 (hardness 65 HRC) was used for the making of the graded layer which was 2.5 mm thick. 

Cutting parameters used in experiment were: spindle speed n = 3000 rpm, feed rate f = 200 mm/min and cutting 
depth ap = 0.5 mm. An example of the measured cutting forces Fx, Fy and Fz by milling graded material are shown 
in Table 2.  

Cutting forces were measured with the system shown in Fig. 6. Main parts of the cutting force measuring system 
are: 

 CNC machine with CNC controller 
 Dynamometer 
 Charge amplifier 
 Data acquisition 
 Software for optimization 

 

 
Fig. 6. Cutting force measuring system. 

 
Measured cutting forces by milling functionally graded material were further used to build a neural network 

which is shown in Fig. 4 and Fig. 5. 
Milling on workpieces was performed with carbide ball-end mill cutters and end mill cutters manufactured by 

Sandvik Coromant. The geometry of the cutters used in our experiments is shown in Fig. 7.  
By milling graded materials, advantageous, short and broken chips were produced (Fig. 7). Large tool wear have 

negatively influence on the quality of the machined surface. After 25 minutes of machine treatment on the CNC 
machine, the cutting edge breakage on both cutters appeared. 
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Fig. 7. Used cutters and chips by milling graded material. 

6. Neural network training and results 

For neural network learning, data shown in Table 2 were used; but 4 samples which were used for testing ANN 
were eliminated. For the purpose of testing the learning effectiveness of ANN experiments under the serial number 
8, 15, 27 and 32 were eliminated. 

Table 2. Depth of cut, feed rate and measured forces Fx, Fy, Fz, R. 

Exp. No. ap [mm] f [mm/min] Fx [N] Fy [N] Fz [N] R [N] 
1 0.25 10 545.30 148.60 51.30 567.51 
2 0.25 15 561.70 173.10 62.50 591.08 
3 0.25 25 583.90 196.70 69.70 620.07 
4 0.25 50 628.80 211.40 77.90 667.94 
5 0.25 75 694.50 255.70 87.70 745.25 
6 0.25 100 765.10 302.20 98.60 828.51 
7 0.50 10 841.60 305.90 117.50 903.15 
8 0.50 15 893.60 308.60 134.90 954.96 
9 0.50 25 962.00 315.10 156.40 1024.30 

10 0.50 50 1081.00 323.30 180.80 1142.70 
11 0.50 75 1187.40 352.10 207.50 1255.77 
12 0.50 100 1243.60 398.40 267.80 1333.03 
13 0.75 10 1303.70 428.60 302.70 1405.33 
14 0.75 15 1394.70 489.30 365.70 1522.61 
15 0.75 25 1472.20 536.70 403.40 1618.07 
16 0.75 50 1568.80 595.50 443.30 1735.59 
17 0.75 75 1652.90 653.40 521.60 1852.32 
18 0.75 100 1742.80 774.30 615.20 2003.84 
19 1.00 10 1814.20 832.40 705.80 2117.16 
20 1.00 15 1879.30 889.10 794.60 2225.68 
21 1.00 25 1987.20 952.30 856.40 2364.16 
22 1.00 50 1973.80 1023.60 901.30 2399.16 
23 1.00 75 2087.60 1068.70 968.70 2537.43 
24 1.00 100 2165.10 1102.70 1009.10 2630.95 
25 1.50 10 2224.00 1153.60 1085.30 2730.36 
26 1.50 15 2301.80 1204.50 1145.70 2839.32 
27 1.50 25 2397.30 1247.30 1214.30 2962.66 
28 1.50 50 2461.10 1284.30 1287.60 3060.12 
29 1.50 75 2533.90 1311.30 1352.00 3157.22 
30 1.50 100 2642.60 1374.60 1448.40 3312.21 
31 2.00 10 2812.50 1437.20 1584.90 3533.78 
32 2.00 15 3001.80 1489.70 1712.30 3763.24 
33 2.00 25 3138.60 1533.40 1842.70 3949.39 
34 2.00 50 3314.30 1573.60 1958.60 4158.96 
35 2.00 75 3522.40 1638.40 2040.00 4387.85 
36 2.00 100 3785.20 1745.80 2115.60 4674.54 

 
 
 

Produced chips by 
milling graded material 
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Main cutting force R shown in Table 2 is calculated as: 

                           (1) 

Best validation performance of ANN, which will be used to predict cutting forces in different directions of the 
coordinate system of the CNC machine is shown in Fig. 8. Feed-forward back-propagation neural network with 10 
hidden layers was used to predict cutting forces in x, y and z directions. 
 

 

Fig. 8. Results of ANN for predicting Fx, Fy, Fz. 

 

Fig. 9. Results of ANN for predicting main cutting force R. 

Table 3 shows the testing results of ANN; where maximum learning error of neural network is 21 %. This is 
actually negligible error; it means that the difference between actual and predicted force is round 50 N by 
experiment 1. In experiments from 25 to 36 much higher forces appears; (in comparison with experiments from 1 to 
24) the maximum learning error of ANN in this cases is less than 4 %. 
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Best validation performance of ANN used for predicting main cutting force R is shown in Fig. 9. In this case 
Feed-forward back-propagation neural network with 4 hidden layers shown in Fig. 5 was used. 

Training results of ANN for predicting main cutting force R are shown in Table 4. Maximum learning error of 
neural network is less than 9 %, which is actually negligible, it means that the difference between actual and 
predicted cutting force is less than 100 N.  

In experiments from 25 to 36 much higher forces appears (in comparison with experiments from 1 to 24) the 
maximum learning error of ANN in this cases is less than 8 %. It was actually found out that this prediction does not 
have influence on our CNC machine and milling process. 

  Table 3. Measured and predicted values of cutting forces Fx, Fy, and Fz by using ANN. 

Exp. No. 
Measured values Predicted values using ANN 

% Error 
Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N] 

1 545.30 148.60 51.30 539.36 179.83 45.64 1.09 21.02 11.03 
2 561.70 173.10 62.50 558.87 179.12 57.49 0.50 3.48 8.02 
3 583.90 196.70 69.70 588.70 184.33 68.39 0.82 6.29 1.88 
4 628.80 211.40 77.90 625.94 210.79 76.95 0.46 0.29 1.22 
5 694.50 255.70 87.70 695.14 252.47 87.58 0.09 1.26 0.14 
6 765.10 302.20 98.60 765.14 304.24 96.60 0.01 0.68 2.02 
7 841.60 305.90 117.50 849.00 290.38 128.17 0.88 5.07 9.08 
9 962.00 315.10 156.40 962.56 293.99 159.29 0.06 6.70 1.85 

10 1081.00 323.30 180.80 1083.92 333.49 187.82 0.27 3.15 3.88 
11 1187.40 352.10 207.50 1210.66 376.98 221.24 1.96 7.07 6.62 
12 1243.60 398.40 267.80 1187.96 415.80 227.72 4.47 4.37 14.97 
13 1303.70 428.60 302.70 1301.12 437.34 300.84 0.20 2.04 0.61 

14 1394.70 489.30 365.70 1391.14 491.65 350.03 0.26 0.48 4.29 
16 1568.80 595.50 443.30 1466.33 565.28 426.53 6.53 5.08 3.78 
17 1652.90 653.40 521.60 1649.98 659.07 528.14 0.18 0.87 1.25 
18 1742.80 774.30 615.20 1743.68 765.70 618.17 0.05 1.11 0.48 
19 1814.20 832.40 705.80 1819.23 857.71 741.13 0.28 3.04 5.01 
20 1879.30 889.10 794.60 1885.37 884.08 794.02 0.32 0.57 0.07 
21 1987.20 952.30 856.40 1981.11 959.32 865.33 0.31 0.74 1.04 
22 1973.80 1023.60 901.30 1972.20 1018.66 903.60 0.08 0.48 0.26 
23 2087.60 1068.70 968.70 2092.14 1058.34 961.86 0.22 0.97 0.71 
24 2165.10 1102.70 1009.10 2163.96 1112.23 1008.62 0.05 0.86 0.05 
25 2224.00 1153.60 1085.30 2188.63 1160.11 1081.05 1.59 0.56 0.39 

26 2301.80 1204.50 1145.70 2253.53 1173.15 1132.62 2.10 2.60 1.14 
28 2461.10 1284.30 1287.60 2462.55 1278.98 1292.92 0.06 0.41 0.41 
29 2533.90 1311.30 1352.00 2532.13 1321.45 1344.88 0.07 0.77 0.53 
30 2642.60 1374.60 1448.40 2641.77 1373.83 1447.84 0.03 0.06 0.04 
31 2812.50 1437.20 1584.90 2924.67 1469.79 1657.64 3.99 2.27 4.59 
33 3138.60 1533.40 1842.70 3144.98 1523.56 1832.03 0.20 0.64 0.58 
34 3314.30 1573.60 1958.60 3304.83 1578.51 1960.72 0.29 0.31 0.11 
35 3522.40 1638.40 2040.00 3404.13 1690.78 2060.85 3.36 3.20 1.02 
36 3785.20 1745.80 2115.60 3739.45 1808.50 2195.87 1.21 3.59 3.79 
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  Table 4. Measured and predicted values of main cutting force R by using ANN. 

Exp. No. Measured values R [N] Predicted values using ANN R [N] % Error 
1 567.51 567.02 0.09 
2 591.08 582.66 1.42 
3 620.07 613.65 1.04 
4 667.94 689.83 3.28 
5 745.25 765.04 2.66 
6 828.51 840.25 1.42 
7 903.15 939.36 4.01 
9 1024.30 1008.18 1.57 

10 1142.70 1119.54 2.03 
11 1255.77 1227.38 2.26 
12 1333.03 1332.36 0.05 
13 1405.33 1525.04 8.52 
14 1522.61 1553.62 2.04 
16 1735.59 1742.74 0.41 
17 1852.32 1866.37 0.76 
18 2003.84 1980.95 1.14 
19 2117.16 2174.88 2.73 
20 2225.68 2205.63 0.90 
21 2364.16 2265.29 4.18 
22 2399.16 2403.59 0.18 
23 2537.43 2526.47 0.43 
24 2630.95 2634.44 0.13 
25 2730.36 2794.75 2.36 
26 2839.32 2826.89 0.44 
28 3060.12 3042.73 0.57 
29 3157.22 3184.61 0.87 
30 3312.21 3314.22 0.06 
31 3533.78 3801.58 7.58 
33 3949.39 3935.32 0.36 
34 4158.96 4167.69 0.21 
35 4387.85 4409.60 0.50 
36 4674.54 4657.97 0.35 

 
The quality of learning ANN was tested with data that were excluded from the learning base. Table 5 shows the 

data that were used to test and verify the quality of the trained ANN. In the table measured values for control of 
predicted data and the calculation of the percentage error are shown. The maximum error in the prediction of 
individual components of the cutting forces is less than 9 % and the total cutting force error is less than 3 %, which 
is certainly under acceptable limit, that was set as a goal before our experiments were implemented. 

Table 5. Parameters that were used to test and verify the quality of the trained ANN. 

Exp. No. ap [mm] f [mm/min] 
Measured values Predicted values using ANN % Error 

Fx [N] Fy [N] Fz [N] R [N] Fx [N] Fy [N] Fz [N] R [N] Fx Fy Fz R 

8 0.50 15 893.60 308.60 134.90 954.96 895.99 294.40 146.05 962.48 0.27 4.60 8.27 0.79 
15 0.75 25 1472.20 536.70 403.40 1618.07 1472.91 548.97 394.30 1609.61 0.05 2.29 2.26 0.52 
27 1.50 25 2397.30 1247.30 1214.30 2962.66 2346.14 1194.04 1206.59 2890.30 2.13 4.27 0.64 2.44 
32 2.00 15 3001.80 1489.70 1712.30 3763.24 2996.60 1487.61 1714.53 3845.65 0.17 0.14 0.13 2.19 

 
7. Conclusion 

The first results of milling very hard material such as graded material shows us that the machining of such 
materials is possible. In any case, in the future will be even more important to focus on the correct geometry of the 
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cutting tool to reduce the size of the cutting forces in all three directions of the coordinate system which are at the 
moment very large. 

On the other hand, the prediction of the cutting forces proved to be very reliable; the error in predicting cutting 
forces was smaller than 10 %. This is a very reliable prediction for the planned cutting force, which allows us to 
operate the machine in a safe area.  

Our wish for the future is to find the suitable cutting parameters (cutting speed, feed rate, cutting depth...) for 
optimal milling of graded material. With this optimal cutting parameters we want fully displace the grinding of 
graded material with milling, where material removal is greater. 

In any case simulations, optimizations, predicting of cutting parameters and cutting experiments of graded 
materials are wished to be performed. Our goal is to introduce milling of graded material into daily production and 
replace grinding with more productive cutting process.   
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