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Abstract 

Contact pressures in open die forging of axisymmetric parts are mainly influenced by friction and billet geometry through the 
shape factor. In this work, a FE model has been developed for analyzing the compression of axisymmetric billets, assuming 
different friction conditions and shape factors of the workpiece in order to evaluate the contact pressures behaviour under 
compression and to determine general trends. A constant friction factor law is assumed, m, and the shape factor is determined as 
the ratio between the height of the workpiece and its diameter, H/D. Additionally, results are compared with those obtained by 
the SM method to validate the numerical model. The results presented in this paper demonstrate that the area of highest wear is 
located in different positions depending on the original geometry of the workpiece, so this information could be considered as a 
useful guidance when designing dies in more complex compression processes as well as in other recent related processes such as 
multi-material forming. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of DAAAM International Vienna. 
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1. Introduction 

Metal forming industry is well known by an efficient material utilization, excellent final material properties and 
high production rates. In the last decades, investigations have been focused in the development of new processes 
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which can overcome some of the limitations and/or disadvantages of conventional ones. In fact, some of them are 
developed by combining some of these conventional techniques. Some recent examples are localized Incremental 
Forging (LIF) processes [1], which are based in the application of incremental forces in order to globally form the 
workpiece; there is also a growing interest in covering the gap of knowledge mainly concerning design criteria of 
multi material forming processes and its simulation [2]. Thus, to improve the knowledge in these new processes, it is 
advisable to get detailed information about the conventional ones through analysis tools. Different analytical 
techniques have been developed in order to study metal forming processes. Early methods are based on simple 
theoretical foundations, where only geometrical considerations and stress distributions are considered. Some 
examples are the Slab Method (SM), also called Sachs’ Method [3], and the Upper Bound Theorem (UBT) [4]. 
Nowadays, analytical methods such as SM and UBT are commonly used to validate FEM results. Since decades, the 
Finite Element Method (FEM) has been established as an indispensable tool for metal forming analysis [5]. This 
numerical method is a powerful technique that takes into account the three main contributions to the total energy 
required (homogeneous deformation, friction and distortion). By using FEM it is possible to study at the same time 
the influence of several technological factors; although the effect of friction in metal forming processes has been 
analyzed since years [6-8], lastly some focus on the friction influence is being observed [9-12]. In compression of 
solid billets between parallel flat dies, the complexity of non-uniform deformation is not only represented by 
barrelling phenomenon due to friction [13] but also by the fact that a part of the initially free surface comes into 
contact with the platen during compression, phenomenon called folding [14]. The mode of deformation is also 
influenced by the billet geometry, measured by the shape factor [15]. The main aim of this work is to evaluate these 
phenomena for a best knowledge of the die-workpiece interface behaviour by means of contact pressure profiles. 
The influence of friction and shape factors on contact pressures is analyzed, which is important to investigate or 
understand in order to identify general trends of contact pressures under compressive conditions. This knowledge is 
directly related to some recent developments based on forming by compression, such as multi-material forming and 
can be also of guidance when more complex geometries has to be form, as in the case of impression-die forging. The 
knowledge of maximum contact pressures location can be helpful in order to predict die wear and subsequent die 
failure. 

2. Methodology 

2.1. Definition of cases 

Contact pressure distributions for different geometries are going to be obtained under different friction conditions, 
defined by the so called friction factor. The different cases that are submitted to finite element analysis are shown in 
Table 1. The case codes denote how each FE model is named for an easy identification. 

                      Table 1. Technological factors and case codes. 

Case 
code 

Diameter 
D (mm) 

Height 
H (mm) 

Friction factor 
m 

 Case 
code 

Diameter 
D (mm) 

Height 
H (mm) 

Friction 
factor 

m 
G1.0 
G1.1 
G1.2 
G1.3 

10 3 

0 
0.1 
0.2 
0.5 

 G4.0 
G4.1 
G4.2 
G4.3 

10 10 

0.0 
0.1 
0.2 
0.5 

G2.0 
G2.1 
G2.2 
G2.3 

10 5 

0.0 
0.1 
0.2 
0.5 

 G5.0 
G5.1 
G5.2 
G5.3 

10 20 

0.0 
0.1 
0.2 
0.5 

G3.0 
G3.1 
G3.2 
G3.3 

10 7 

0.0 
0.1 
0.2 
0.5 
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Workpieces are cylinders of 10 mm in diameter, D. The height of the workpiece, H, changes from the 

lowest one, where H = 3 mm, to the highest one, where H = 20, as it is indicated in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1. Example of mesh and contact nodes in Finite Element Model by DEFORM F2TM. 

2.2. Finite element model 

Finite element models have been developed in DEFORM F2™. It is a computer aided engineering software that 
enables designers to analyze metal forming processes. 

An specific axisymmetrical model is simulated for each case of the ones defined in Table 1. Symmetry conditions 
are imposed, so only half of the model is analysed. Flat platens are modeled as rigid parts and workpiece as a 
deformable body. The workpiece in all models is meshed by solid (brick) elements as showed in Fig. 1. Regarding 
the material, the billet has been modeled with aluminium alloy AA 7075-O, whose main mechanical properties are 
shown in Table 2. 

2.3. FEM validation 

In order to validate the results obtained by FEM an analytical method is employed. The Slab Method in its 
axisymmetric form is simple to apply compared to FEM and provides a good first approach to the required load in 
forging problems. Concretely, the expression of the total pressure applied by the platens is defined in (1). 

                                     (1) 

Because of the assumptions adopted during the analytical development of the method, this provides good results 
when friction factors are low, but must be carefully used when high friction factors are involved. 

      Table 2. Mechanical properties. 

E (GPa)  Y (MPa) 

200 0.3 457.8 
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a b c 

        Table 3. Shape factors of billet used in validation. 

Diameter 
D (mm) 

Height 
H (mm) 

Shape factor 
H/D 

10 3 0.3 
10 5 0.5 
10 7 0.7 
10 10 1.0 
10 20 2.0 

 
The shape factors to be considered in the validation procedure are shown in Table 3. Results obtained after 

applying the Slab Method to these particular conditions are represented in Fig. 2. As expected, pressures provided by 
FEM are slightly higher than by the analytical method. This is due to the fact that FEM takes into account all the 
energy contributions as explained in [16] and Slab method only considers homogeneous deformation and friction 
components [3]. Considering that Slab method should be applied carefully with high friction factors, this can explain 
the behaviour observed for the higher friction factor (m = 0.5). 

 
 

Fig. 2. Validation of FE models with Slab method for different friction conditions (a) m=0.1; (b) m=0.2; (c) m=0.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Adimensional contact pressures versus contact length for all shape factors and m=0.1. 
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Fig. 4. Adimensional contact pressures versus contact length for all shape factors and m=0.2. 

 

Fig. 5. Adimensional contact pressures versus contact length for all shape factors and m=0.5. 
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Taking into account mainly the results for the lowest friction factors (m = 0.1 and 0.2) it can be stated that FEM 
results are in good agreement with the analytical method. 

3. Results and discussion 

In order to represent the contact pressure distribution, a radial path of tracking points is defined from the centre to 
the border of the billets. 

Contact pressures and the path coordinates are represented in an adimensional way for an easy comparison of 
results. 

                    
 

                      
 

Fig. 6. Equivalent plastics strain diagrams for shape factor H/D=0.3 and different friction factors  
(a) m=0; (b) m=0.1; (c) m=0.2; (d) m=0.5. 
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Fig. 7. Equivalent plastics strain diagrams for shape factor H/D=2 and different friction factors (a) m=0; (b) m=0.1; (c) m=0.2; (d) m=0.5. 
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Contact pressures are divided by the flow stress, Y, whereas the contact length defined by the radial position in 
the path, r, is divided by the radius of the billet, R. 

Fig. 3 to 5 show contact pressure profiles for all shape factors defined in Table 2 and different friction factors  
(m = 0.1, 0.2 and 0.5). 

For each friction factor, the contact pressure profile trend changes with the shape factor. For small shape factors, 
the peak of maximum contact pressure is located at the centre of the die, following the shape of the so called 
“friction-hill” previously studied by other authors such as [17]: when friction is present, the outward movement of 
the material in contact with the platens is restricted, hence the cylinder bulges. The friction force opposes the 
outward flow of the material, meaning that a higher stress must be generated near the centre of the contact zone to 
move the material outwards. 

However, as the shape factor increases, the maximum changes at the end of the contact edge with the workpiece, 
whereas the minimum contact pressures are placed at the centre of the die. This would affect directly to the area of 
highest die wear, which will be located in different positions depending on the original geometry of the workpiece. 

Moreover, this change in contact pressure profiles is more extreme as the friction increases, being the differences 
between maximum and minimum values more emphasized. 

In all figures, one horizontal black line is drawn at the normalize contact pressure of value 1.0; this line represents 
the flow stress, so the areas where flow stress is exceeded can be easily identified in every case. 

This can be also identified through equivalent plastic strain diagrams represented in Fig. 6 and 7; for the group of 
smaller shape factors (G1), equivalent plastic strains are not null because the flow stress is overcome close to the 
contact surface. However, for the group of higher shape factors (G5), equivalent plastic strains are registered only at 
the end of the contact surface, away from the axis. 

4. Conclusion 

In this work, a FE model has been developed for analysing the compression of axisymmetrical billets, assuming 
different friction conditions and shape factors of the workpiece in order to evaluate the contact pressures behaviour 
under compression. 

The FE analysis shows that for small shape factors, the peak of maximum contact pressure is located at the centre 
of the die, following the shape of the so called friction-hill. However, as the shape factor increases, the profiles of 
pressure distribution obtained by FEM indicate that a simple friction-hill does not occur; instead, the maximum 
changes at the end of the contact edge with the workpiece, whereas the minimum contact pressures are placed at the 
centre of the die. 

Also, the areas at the workpiece surface where flow stress is exceeded are also identified in every case by means 
of equivalent strain diagrams. 

The results presented in this paper demonstrate that the area of highest wear is located in different positions 
depending on the original geometry of the workpiece, so this information could be considered as a useful guidance 
when designing dies in compression processes. These results could be of interest not only when the workpiece is a 
cylindrical billet, but also when more complicated shapes are plastically formed. 

Future research plans include the evaluation of friction and shape factors on contact pressures in more complex 
compressive processes (such as impression die forging), in order to check if the trend observed in this paper can be 
generalized; the evaluation of friction conditions on other aspects such as surface roughness and surface 
microstructure of the workpiece; and the analysis of die wear in compressive forming processes under different 
lubricants and forming conditions and its relation to contact pressures analysis. 
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