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Abstract: This study deals with area of structural health 

monitoring of bridges and viaducts, and especially of insulation 

systems for these kinds of constructions. Analysis in this paper 

reveals some particular aspects regarding the structure 

response of the impact tests applied on deck bridges in view of 

bearings damage level characterization. Basic information in 

this paper derives from practical cases of viaducts on A3 

Highway in Romania. Final results will be included into a 

regulated procedural methodology for continuous monitoring 

of bridges damage level. 

Keywords: bridge health monitoring, structural integrity, 

rubber-based bearings, vibration isolation. 

 

1.  INTRODUCTION 
 
Monitoring of bridges health level and evaluation of 

their structural integrity necessitate an appropriate 
method which has to be able to assure a set of essential 
requirements as follows: evaluation of main parameters 
regarding the bridge dynamics and significant changes of 
these during the exploitation time, prominence of direct 
influence of ageing about the damage imminence both 
into the deck bridge structure, and into the bearings, 
prominence of external perturbation factors influences 
about the bridge structure and the dynamic isolation 
systems, evaluation of global damage level in respect 
with its reference limit and mean time to fail values. 
Final purpose of these evaluations consists to an efficient 
maintenance procedure especially for dynamic isolation 
devices. 

The analysis proposed in this paper start from the 
basic method of the impact test of deck bridges with 
truck tip movement over a regular bump. The 
instrumental tests of dynamic behaviour dignify the 
spectral characteristic of the structure and reveal the 
possible resonance area. Taking into account the rubber-
based bearings it offers the premises to evaluate the 
isolation performances against vibration and shocks due 
to road traffic and also seismic actions [1...7]. 

Utilization of truck tips for dynamic excitation is able 
to induce different forces into the bridge structure as a 
function of truck masses geometry and loads. This type 
of external excitation can be assimilates such a random 
or such a deterministic perturbation, depending the way 
to generate the signal. Also, the spectral composition of 
excitation signal can lead to a weighted response - when 
the excitation can be assimilates with an impulsive load, 
or to a harmonic response - when the excitation is 
suppose to be a simplified (much theoretical) harmonic 
signal [5...7]. 

The theoretical approaches in this paper presents 
uncommon situations which can appears in case of 

impact test serviceable procedure. It has to be mentioned 
that these phenomenon can be either efficacious or 
inefficacious depending the type of excitation and of the 
response wanted to use into the experimental tests. 

 

2.  BASIC MODEL 
 
This paragraph presents the basic model of the 

proposed method for dynamic evaluation of the bridge 
structural response. The scheme in Fig. 1 depicts the 
physical model of a bridge section with a truck tip 
moving over and with a regular bump mounted at a 
certain distance from one of the section end. 
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Fig. 1. Schematic diagram of deck bridge dynamic testing 
 

Resulting from the model in Fig. 1 the schematization 
supposes an elastic beam insulated at both ends with a 
regular bump mounted at Lbump from one of the end. The 
truck model supposes a rigid mass with two degrees of 
freedom linked with ki rigidities by the beam. The 
position of this mass Lex relative to the beam end is 
variable in respect with the constant velocity v of the 
truck. In Fig. 1 schematic diagram u(x,t) denotes the 
beam deflection, zi denote the vertical displacements of 
the wheels on the road surface, yi are the displacements 

of the two ends of the truck model, y and  denote the 
independent coordinates of truck mass respectively in its 
center of gravity situated at a and b distances from each 
end. 

The differential equations systems of the model can 
be assembled based on the equation of transversal wave 
in beams and using Laplace 2nd order equation for the 
truck mass. Hereby the movement of the bridge section 
can be evaluate with the partial differential equation 
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where E, I, mv, A denote Young's modulus, moment of 
inertia, volumetric specific mass, respectively sectional 
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area of the deck bridge as variable parameters in respect 
with longitudinal position x, and q(x,t) denotes the 
external excitation term. 

The movement of the truck tip over the bridge section 
can be simulated with the next differential equations 
system  
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where m, J, L denote the mass, moment of inertia, 

respectively total length of the truck tip, i is the distance 
between the center of gravity and each end of truck, and 

i denote the deformations of each wheel. The equations 
of system (2) suppose summation for i=1,2 according the 
two axles of the truck. Simplified notations in (2) have 
the significance as follows 
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The external perturbation function q(x,t) contains 

both static and dynamic terms, and assure the linkage 
between the beam evolution and the truck dynamics. The 
expression of q(x,t) can be written as follows 
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The terms in (4) correspond by beam weight, static 

and dynamic external loads, and also respect the 
summation for i=1,2 according the two axles of the 
truck.  

The hypothesis of constant characteristics of material 
and masses geometry for bridge section leads to a 
simplified form of dynamic equations as follows 
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with simplified notations 
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3.  PERTURBATION SIGNAL ANALYSIS 
 
Taking into account the sub-model of the excitation 

system (truck tip equipment) results that analysis of 
perturbation signal structure can be developed with the 
help of two degrees of freedom dynamic model (see 
Fig.2). 
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Fig. 2. Schematic diagram of deck bridge dynamic testing 

 
The natural pulsations of the simplified model like 

that depicted in Fig. 2 can be evaluated with the 
homogeneous differential equations system, as follows 

 

  

    01

01

221121

221121









LkLk
L

J

kkm





       (7) 

 
where the center of gravity coordinates was written in 
respect with variable changes as follows 
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Supposing the solutions of (7) as follows 
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making derivatives of (9), replacing into (7) and 
grouping the terms results an algebraic equations system 
with two unknown variables as a1, a2 
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which have the non-zero solutions in case of null 

determinant ( 0*  ) 
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With the ratio between rigidities noted by 12 kk  

into (11) results the characteristic equation of natural 

pulsations in respect with (m, J, L, , , k1) parameters 
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Taking into account the last equation and following 

the initial purpose of this paragraph results that the 
inequality between the squared values of natural 
pulsations can be evaluated as follows 
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Optimization of the mass geometry configuration 

with respect in position of the center of gravity  and 

stiffness ratio  imposes an appropriate estimation of 
basic parameters values. Without any significant 
diminishing of general character of this analysis it will be 
consider that the truck tip equipment have a mass range 
between (30000...50000) kg and a wheels rigidity having 
k1 = 100000 N/m. 
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Fig. 3. Evolution of natural pulsation difference in respect with  and m 

parameters for (a)  = 0.5, (b)  = 1.0 and (c)  = 1.5 

Simulations presented in Figs. 3...5 shows the 

evolution of the natural pulsation difference  as a 

function of the relative position  the rigidity ratio  and 
five main values of mass m.  

Diagrams in Fig. 3 show the evolution of the  

parameter in respect with the relative position  
according with discrete variation of mass m and rigidity 

ratio . These diagrams dignify the system behaviour 

into the area of small differences of  and also reveal 
possible null values of natural pulsation difference. 
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Fig. 4. Evolution of natural pulsation difference in respect with  and m 

parameters for (a)  = 0.25, (b)  = 0.5 and (c)  = 0.6 
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Fig. 5. Evolution of natural pulsation difference in respect with ( ) 

for m = 40000 kg 

 

An appropriate analysis with previous case results 
from the diagrams in Fig. 4. These graphs correspond 
with the evolution of the natural pulsation difference in 

respect with the rigidity ratio  according with discrete 

variation of mass m and relative position . 

According the previous analysis the diagram in Fig.5 
presents the evolution of the natural pulsation difference 

 parameter as a function of the relative position  and 

the rigidity ratio  for mass m of 40000 kg. This value 
was adopted according with the total mass of the truck tip 
used into the instrumental tests. It had to be mentioned 
that the entire simulation procedure supposing the 

rigidity ratio  into a range of (0.2 ... 2.0) and the 

relative position  having limit values of 0.2, respectively 
0.8. Greater values of rigidity ratio have not a serviceable 
purpose. 

 

4.  DISCUSSIONS AND PARTIAL REMARKS 
 
The analysis of the natural frequencies dispersion and 

distribution of the excitation system is very useful to 
evaluate the characteristic of the perturbation type into 
the bridge and also the dynamic behaviour of the deck 
bridge and its bearings right away the impulsive load 
have been produced. The truck tip equipment had to 
working in post-resonance domain according with its 
main purpose into this analysis that is the excitation 
system. Also the impulsive test of the deck bridges have 
not to affects this kind of excitation system.  

One of the basic ideas of this study supposes to 
restrain the spectral spilling of the natural frequencies of 
excitation. Hereby it will reduce the width of possible 
resonance area. The entire study follows the hypothesis 
of best minimizing of the natural pulsations difference 

parameter  thus that for a certain reduction of the 
reference pulsation it will be simply left-side shifted the 
entire resonance area. In presented case the rigidity k1 is 
the appropriate element to do this intention through 
different technical means.  

According these hypotheses lets briefly evaluate the 
presented results. From the diagrams depicted in Figs. 3 
to 5 results that unitary ratio of stiffness and symmetrical 
center of gravity provides a superposition of both natural 
pulsations. It also results than greater masses imply 

reduced values of  on the entire simulated domain. The 
direct linkage between stiffness ratio and relative 

position of the center of gravity (CG) of truck tip 
equipment is mainly sustained by the graphs in Fig. 5. It 
can be observed that in the same time with stiffness ratio 

 reduction, results also a reduction of the CG relative 

position  for the minimum value of  parameter. But the 

absolute minimum value of  increases in respect with 

dispersion of  parameter from unitary value, regardless 

the dispersion direction. Analysis of the () 
dependences depicted in Figs. 3 and 4 intensify the 
previous observations.  

5.  CONCLUSION 
 
Major purpose of this study consisted by presentation 

and validation of some practical possibilities to adjust the 
characteristic of the excitation system usually used in 
bridge bearings health monitoring procedures without 
reducing its main capabilities but helping it to work into 
the appropriate domain regarding initial requirements. 
Taking into account the remarks in previous paragraphs it 
had to be concluded that optimization of main 
configuration of the masses geometry provides a 
serviceable way to control dynamic effects induced into a 
deck bridge and its bearings during the experimental tests 
and analysis of the damage level. 
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