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Abstract: Yarn unwinding from packages plays an essential 

role in many textile processes.  The stability of unwinding has a 

direct influence on the efficiency of the textile processes in 

general and on the quality of the final products.  Calculations 

based on theoretical model of unwinding can help us in our 

pursuit of the optimal design of the packages and the optimal 

unwinding process.  In the article we will derive the system of 

differential equations that describe unwinding of the yarn. 
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1. INTRODUCTION 

 
     In production of garments thread unwinding exists in a 

sewing process. In order to achieve low and constant tension of 

thread or yarn it is necessary to optimize the process of 

unwinding. Computer  simulation are now in use for this 

purpose, so it is important to obtain a mathematical description 

of yarn motion (Barr&Catling, 1976, Padfield, 1958).    

 

2. KINEMATICS 

     We introduce a 

cylindrical coordinate 

system that rotates around 

the z axis with an angular 

velocity . The yarn is 

parametrised with arc length 

s (s is therefore the length of 

yarn from the origin of the 

coordinate system to the 

given point on the yarn). 

The coordinates of a point are given by r, the radial distance 

from the axis, , the polar angle and z, the vertical distance 

from the origin (Kong, 1997, Kong et al.,1999). 

Fig.1: Cylindrical coordinate system rotates around the z axis 

with an angular velocity . 

It should be kept in mind that each point has its own triplet of 

base vectors ez, e, er, respectively pointing in vertical, 

tangential and radial direction. The radius vector pointing to a 

point on the yarn can be decomposed along radial and vertical 

directions (the polar angle dependence is hidden in the er 

vector): 

                                                                                                  (1)                                                                                    

We have emphasized that coordinates of a point depend 

explicitely on both the time of observation t and on the arc 

length s, where the point is located at given time t. 

The velocity of a point on a yarn that is being withdrawn (with 

withdrawing speed V) 

 is given by the total time derivative: 

                                                                                               

                                                                                                 (2)     

                         

It is important to note that the velocity is not given by the local 

(partial) time derivative, denoted by r/t. This derivative does 

not take into account that in the infinitesimal time t the point 

moves to a different position along the yarn (i.e. to a d+ifferent 

arc length s). The contribution to velocity due to this movement 

is described by the additional term r/s s/t. The withdrawing 

speed is equal to V=-s/t and we obtain the following 

expression:                                                                                                                     

                                                                                                  (3)                                                                           

where the dot denotes the partial derivative with respect to 

time. It’s worth noting that t=r/s is the unit tangential vector 

to the yarn. Indeed the direction of the withdrawing velocity at 

a given point should be in the direction of the yarn. 

To calculate the time derivative of the radius vector we make 

use of a relation between derivatives in an inertial and a 

rotating frame:                                                            

                                                                                          (4)                                                        

 

When applied to a base vector, that is rotating around the Z axis 

together with the yarn, this equations gives                                                                                                          

                               

                                                                                                 (5)                                                               

The partial time derivative of the radius vector is then found to 

be: 

 

 

                                                                                                 (6) 

The final expression for the velocity of a point is of the form 

 

                                                                                               (7)  

The three contributions to the velocity of the point have very 

simple physical interpretations. The first term is the relative 

velocity in the non-intertial frame; it describes how the form of 

the yarn is changing from the point of view of an observer that 

is rotating together with the yarn, but it is not equal to the 

velocity of a given point in the non-intertial frame. (This term is 

dropped in the quasi-stationary approximation that we describe 

below.) The second term is the circular velocity of the point due 

to the rotation of the frame; this is the velocity of a point that is 

fixed in the non-inertial frame. Finally, the last term is the 

withdrawing velocity that we introduced above. 

By analogy, the acceleration of a point is given by the total time 

derivative of the velocity. By a lengthy but straight-forward 

calculation we obtain the following expression: 

                                                    

                                                                                                  (8) 

                                                                                                                                                                                                                                                                                                                            

This complex expression can be given more compact form if 

we introduce a differential operator D, which follows the 

motion of the point in the rotating frame(Fraser 

&Ghosh&Batra,1992): 

 

                                                                                                 (9)                                                                        

The fact that this operator “follows the motion of the point in 

the rotating frame” means, that the partial time derivative 

operator only operates on the coordinates of the point (r, , z), 

but it gives zero when applied on the base vectors ez, e, er. 

 
 

 



 

 

The simplified expression for the acceleration is  

                                              

                                                                                                (10)                                                                                                                                      

This expression is reminiscent of an analogous expression for 

acceleration of a point object in a rotating frame, with partial 

time derivatives replaced by the differential operator D. 

 

3. DINAMICS 
 

     Newton’s law in the form of F=ma, where F is the force on 

the body, a the acceleration and m the mass of the body, can be 

used to describe the motion of point bodies and the centre-of-

mass motion of rigid bodies. Here we are dealing with yarn, 

which is a deformable body, and we want to describe not only 

the motion of the yarn as a whole, but also it’s shape itself 

(Pracek, 2002). For this reason we partition the yarn in a large 

number of short (infinitesimal) segments of length s and we 

apply Newton’s law for each individual segment (Fig.2). 

 

 

 

 

 

 

Fig. 2. A segment of yarn and forces that act on it 

 

The three largest forces that act on each segment are: 

 the air drag for that part of the yarn that forms the 

balloon (or the force of friction for the part of yarn 

between unwinding and lift-off point on the package, 

which is sliding on lower layers of yarn) 

 the force imparted to the segment by the yarn 

“attached” to the right end point (at arclength s), -T 

r/s(s). Scalar T is the yarn tension, and the force is 

obviously directed along the yarn. 

 the force imparted to the segmend by the yarn 

“attached” to the left end point (at arclength s+s), T 

r/s(s+s). 

The last two forces are due to internal elastic stress which 

appear because the yarn is being strained. In tridimensional 

bodies the elastic state is described by a tensor (stress tensor), 

while in a one-dimensional body such as yarn a scalar quantity 

T (tension) is sufficient. It is measured in units of force [N]. 

We can thus write the second Newton’s law for the yarn 

segment as 

 

                                                                                        (11)                                                                                                                           

The mass of a segment is m=s, where  is the linear density 

of mass (i.e. mass per unit length). We write the external force 

F as F=fs, where f is the linear density of external force (i.e. 

external force per unit length). We divide the previous equation 

by s and we go the limit of infinitesimal length of the segment, 

s0: 

                                                                                        (12) 

                                                                                                             

The limit in this expression is by definition the derivative of 

function Tr/s with respect to arc-length s. The final result, the 

equation of motion for an infinitesimal yarn segment, can be 

written as 

                                                                                      (13)   

or, if we take into account the expression for the acceleration, 

                                                                     (14) 

 
4. VIRTUAL FORCES IN A NON-UNIFORMALY 

ROTATING FRAME 
 

The D2r term in the equation of motion can be interpreted as the 

acceleration of a point in the rotating coordinate system. The 

other three terms on the left hand can be moved to the right side 

of the equation and reinterpreted as virtual forces that appear 

due to the non-inertial character of this observation frame. 

These are not »real« physical forces, but rather forces that an 

observer in a non-inertial frame would feel because of inertial 

effects. To emphasize the difference the virtual forces are also 

called system forces, inertial forces or pseudo-forces. It should 

be kept in mind that these forces do not appear in equations of 

motion if they are written in an inertial frame, even if the 

motion of the body itself is accelerated. They only appear when 

the equations are expressed in the form appropriate for a non-

inertial obsertvation system.  

   1.                                                     the Coriolis force 

 

2. the centrifugal force  

 

3.                  an additional force due to changes of the 

rotational velocity. 

 

In most of the introductiory textbooks on mechanics the 

only case that is considered is that in which the angular velocity 

is constant, so that only Coriolis and the centrifugal forces 

appear. For this reason the third force is less known and 

unfortunately it is often neglected even when it plays some role. 

We were unable to find any mention of this virtual force in the 

available litterature on yarn unwinding and the balloon theory. 

It is interesting to describe how an observer standing on a 

merry-go-round would feel each of these forces. Usually we 

first notice the centrifugal force; this force »tries« to »eject« us 

from the merry-go-round. Coriolis force can be seen at work 

when we throw an object in the radial direction. As seen from 

our point of view, the object work fly in a straight line as in an 

inertial frame, but it will deviate in a direction that is 

perpendicular to its velocity. The third force could be felt if the 

merry-go-round would suddenly come to a halt. As our 

experience tells us, we would most likely fall in this event. This 

force therefore isn't always negligible: it has very sensible 

effects when the angular velocity suddenlty changes. 

 

5. CONCLUSION 
 

We have shown crucial steps in the derivation of the 

equation of motion of yarn: the introduction of the non-

uniformly rotating  obsrvation frame, the calculation of velocity 

and acceleration and the application of Newton’s second law to 

an infinitesimal segment of yarn. The origin of the virtual 

(system) forces was described.We have emphasized the role of 

the less known virtual force that can have important effects near 

the edges of a package. In the foture we will show when this 

force should be taken into account in the balloon theory. 
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