

Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679

ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals of DAAAM International

PROGRAM FLOW CONTROL IN WOLFRAM MATHEMATICA

LACKOVIC, A[ndrej]

Abstract: Program flow control in Mathematica is usually done

using two mechanisms. The first mechanism is a conditional

statement based on the If command, while the second

mechanism is a loop mechanism. There are two basic loop

structures in Mathematica: the DO structure and the WHILE

structure. Conditional expressions within these structures are

examined using relational and logical operators.

Key words: flow control, operators, conditional expression,

loop

1. INTRODUCTION

 When solving certain problems, it is necessary to repeat a

series of commands or switch to a specific location in the

program depending on the given parameters, in other words, to

have the necessary control over the program execution flow.

Basic mechanisms controlling the program execution flow,

which can be used with almost all programming languages, are

loops, branches and jumps. Apart from these, Mathematica

includes other management structures to facilitate writing of

diverse simple and effective programs.

2. RELATIONAL AND LOGICAL OPERATORS

 Relational operators (comparison operators) compare two

numbers and determine whether the comparing statement is

"true" ("correct") or "false" ("incorrect"). Logical operators

examine expressions whose values may be true or false.

Relational and logical operators can be used in mathematical

expressions, and are often used in combination with other

operators when making management related decisions during

the execution of the program. (Wolfram, 2008.)

Relational operator description

< Less than

> More than

<= Equal to or less than

>= Equal to or more than

== Equal to

!= Different from

Tab. 1. Relational operators

logical operator description

&&
If both have the value true, the result

is true; otherwise the result is false

||

If one or both have the value true, the

result is true; otherwise the result is

false

!

Gives a value opposite of the operand

value; the result is true if the operand

is false, and if the operand is true, the

result is false

Tab. 2. Logical operators

3. FLOW CONTROL COMMANDS

3.1 Conditional statements

 Conditional statement is a command that allows the

program to decide whether to perform a group of commands

following the statement for conditional execution, or to skip

these commands. (Wolfram, 2008.)

IF – END structure:

 If[conditional expression, command group]

If the conditional expression has the value true, the program

executes commands following the comma. If the conditional

expression is false, the program skips the group of commands

after the comma, and continues to perform the commands

after].

IF – ELSE – END structure:

 If[conditional expression, command group (1),

 command group (2)]

If the value of the conditional expression is true, the

program executes the first group of commands after the comma,

and if the value of the conditional expression is false, the

program executes the second group of commands (after the

second comma).

ELSEIF structure:

 If[condition(1) , commands (1),

 If[condition(2), commands (2), ...

]

]

If the conditional expression has the value true, the program

executes the first group of commands. If the conditional

expression of the statement has the value false, the

programmoves to a new statement If, etc.

Fig. 1. Source code of Example 1

Fig. 2. Source code of Example 2

Example 1: Along with default parameters a,b and c of the

quadratic equation

 (1)

the program displays two real solutions, one double solution or

no real solutions.

3.2. Loops

Mathematica supports two loop structures: DO and

WHILE (Maeder, 1997.)

DO structure:

 Do[loop body, {s, smin, smax, step}]

The body of the loop is executed until s takes integer values

from smin to smax with the default step.

Example 2: The program takes vector (list) as argument and

returns the sum of its elements.

FOR structure:

For[start, conditional expression, step, loop body]

The body of the loop is executed until the value of the

conditional expression is true.

Example 3: The program takes one real number as argument an

returns the sum of first n natural numbers, sum of squares n

natural numbers and sum of cube n natural numbers.

Fig. 3. Source code of Example 3

Fig. 4. Source code of Example 4

WHILE structure:

While[conditional expression, loop body]

Conditional expression in the While command must contain

at least one variable, whose value should be known when

Mathematica executes the While command for the first time.

Within the loop body there must be at least one command that

assigns a new value for at least one of these variables.

Otherwise, the execution of the loop would never stop, because

the conditional expression would always have a value of true.

(Wolfram, 2008.)

Note that in an example like:

 i=0; While [i<0 , tot+=f[i] ; i++]

the roles of ; and , are reversed relative to C-like programming

languages.

Example 4: The program loads the numbers one by one as

arguments using the Input command, and specifies the

maximum number loaded. The loading process is stopped when

number 0 is loaded.

4. CONCLUSION

Only the programming in Mathematica software package is

called rule-based programming. As regarding the program

execution flow control, there is a standard algorithm that we

could program in any procedural language like Fortran or C.

However, Mathematica has a very simplified syntax for using

commands. In addition, the advantage is that it enables us to

use software package functions (completed functions within

Mathematica) within a standard algorithm, which in most other

programming languages would need to be written separately,

especially in the case of mathematical functions. In future

research plan is to study additional options of commands for

flow control of the program, and make detailed comparisons

with other programming languages (like C, C++, C#).

5. REFERENCES

Maeder E., Roman (1997). Programing in Mathematica (3rd

Edition), Addison-Wesley Professionals, ISBN-978-

0201854497, States of America

Maeder E., Roman (1996). The Mathematica programmer II,

Academic Press, ISBN 978-0124649927, States of America

Wolfram, Stephen (2008). The Mathematica Book, Fourth

Edition, Wolfram Media, ISBN 1-57955-004-5, United

States of America

Wolfram, Stephan (1994). Mathemathica – The Student book,

Addison-Wesley Pub, ISBN 978-0201554793, USA

*** (2010) http://reference.wolfram.com – Wolfram

Mathematica Documentation Center, Accesed on :

2010-08-13

