Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679
ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

DAAAM Symposium

SECURITY MEASURES IN VIRTUAL LABORATORY OF MICROPROCESSOR
TECHNOLOGY

DULIK, T[omas] & BLIZNAK, M[ichal]

Abstract: This paper presents the security framework we have
developed for virtual laboratory of microprocessor technology
deployed at TU Brno. The central part of the framework is
network probe implemented with ulogd2 - an open source
connection logging daemon, which was extended by several
new plugins allowing analysing the network traffic with
negligible CPU load. This solution provides performance
similar to expensive dedicated network probes but is much
more flexible as it can be implmented directly on the existing
Linux servers or Linux routers without cannibalising their
throughput.

Key words: network security analyzer Linux ulogd2

1. INTRODUCTION

In the “Virtual laboratory for microprocessor technologies”
(VLAM) project, we have built a laboratory virtualization
infrastructure which is completely based on Linux. Therefore,
when implementing the network security measures for VLAM
project, we were looking for free Linux-based network probes
first, leaving aside all the expensive standalone network probes
as a fallback solution.

The network traffic probe is a basic building block of any
network security tool. The probe captures packets from the
network, pre-processes and/or analyzes them and sends the
results to a collector service. The probe must be able to handle
traffic even during 100% network load and this is quite hard to
achieve with 1Gbit or 10Gbit Ethernet, because the packet
analysis is much more CPU intensive than routing/firewalling
tasks carried by ordinary network devices.

Therefore, although some network probes are implemented
in most brand-name IP routers, the burden on their CPU often
calls for deploying a standalone network probe devices with
lots of CPU power and/or HW-accelerated packet analysis.

In VLAM project, we needed a system which would be
capable of analyzing and protecting against security threats but
we also wanted to have the accounting of both legitimate and
unwanted network traffic. For these purposes, there are several
solutions available in Linux, for example libpcap with
PF_RING, nProbe, fprobe, softflowd, pmacct, libnetfilter log,
libnetfilter conntrack, 1libe1000, ipt netflow and others. The
nProbe, fprobe, softflowd and ipt netflow were analyzed and
benchmarked by (Kuna, 2009) who found the ipt netflow
kernel module as the best performing tool out of those tested.
The nProbe and fprobe were lacking far behind ipt netflow
even when the PF_RING sockets were used because these tools
do the packet analysis in userspace which requires time-
consuming context switches.

Based on our own analysis of the above mentioned tools,
we decided to build our system on the libnetfilter conntrack
and ulogd2 tools. Unfortunately, to our knowledge, an analysis
or performance benchmark of these tools has not been
published yet. The only paper describing ulogd2 (Welte, 2005)
was written by the author of ulogd2 but its content is now quite
outdated. Due to the obligatory space limitation we are not able
to publish the analysis and benchmark of ulogd2 with

libnetfilter conntrack in this paper. However, we have made
these benchmarks and found that libnetfilter conntrack induces
the same or smaller CPU load as ipt_netflow. Moreover, we
argue that libnetfilter conntrack is much easier to deploy since
it has already been included in all Linux distributions. Despite
of this, it remains widely ignored by Linux users.

This paper is structured in following way: first, we
introduce the VLAM project architecture. Then we describe the
security framework and its components. Finally, we compare
our approach with the available alternatives and show the
possible future development paths in this area.

2. VLAM PROJECT ARCHITECTURE

VLAM security framework is implied by the VLAM
network architecture depicted on Fig. 1.

e
User 1

Server room
Physical server machine

Hypervisor
q i VLAM web gateway
virtual machine

eth0 f

Laboratory room

Lab. workplace 1

[asnzua]

Virtual desktop 1 -»ethl.1

= MCU dev. kits
Virtual desktop 2 «»eth1.2

Virtual desktop 3 **eth1.3 ; ta—»- Lab. workplace 2
. ; ethl Lab. workplace 3

youms 399

NV (Aluo-1senb) reussiu|

Virtual desktop N-»eth1.N

la—»| Lab. workplace N

ﬁig. 1. VLAM project architecture

The project allows students to work remotely with the
equipment located at the microprocessor laboratory similar way
as they work in normal full-presence class setting, where each
student sits at one laboratory workplace equipped by MCU
development kit, an oscilloscope and a signal generator and has
full control over this equipment. In the remote work scenario,
the VLAM project provides access to the laboratory workplaces
by means of virtual desktop machines which are connected to
the laboratory equipment through ethernet or ethernet-to-USB
bridges.

The VLAM web gateway system (Bliznak, 2010) assigns
one virtual desktop machine to each remote student so that
remote students are isolated from each other.

The other security element we have used are the 802.1Q
VLAN interfaces (ethl.1- ethl.N on Fig. 1) separating the
networks of each laboratory workplace. The separation is done
by the GbE switch whose configuration is shown on Fig. 2.: the
switch port connected to the physical server machine is
configured as 802.1Q VLAN trunk and the ports connected to

the individual workplace networks are configured to pass only
single VLAN. The packets coming from the workplaces are
802.1Q-tagged after entering their switch ports and packets
coming from server are untagged before leaving the switch.
This configuration creates the same level of isolation as if each
workplace was connected to a dedicated NIC in the server by a
dedicated cable — such a connection would be possible but
highly impractical.

GbE switch

VLANL1 | Tag it!
ethl.1 VLAN2

eth1.2 GbE VLA ”

ethl.3 ; fab'e;i AN VLAN?LA—':

ethl] Switch
logic

Server
VLAN interfaces

I

‘

ethl.N VLAN N [

Fig. 2. 802.1Q VLANs in VLAM project

‘

In fact, the VLAM project architecture was designed with
respect to existing network infrastructure and space/power/air-
conditioning constrains implied by the VLAM server running in
24/7/365 mode. We are aware that the server should be placed
in server room which can by far away from the laboratory and
that it is not feasible to install new cables between these places.
Therefore VLAM needs only one ethernet cable between the
server room and we implement the laboratory inner/inter-
network isolation by 802.1Q VLANS.

3. VLAM SECURITY FRAMEWORK

The two thick grey dotted arrows on Fig. 1. are showing the
user interaction with VLAM components. The only components
visible to the user are the “VLAM web gateway” and the
laboratory workplace that the web gateway assigns to the user
after successful login. The implementation of the VLAM web
gateway and its security measures are described in (Bliznak,
2010). In this paper, we only address the top-level security
framework we have developed for VLAM.

Network probe machine
Kernel space

nfnetlink nfnetlink
_log _conntrack
User space
ulogd2
y libnfnetlink
libnetfilter | libnetfilter
_log _conntrack

Plugin stacks:#
NFLOG NFCT
Filter(s) Filter(s)
MySQL MySQL

I
|

y Collector machine
‘MySQL server ‘«‘ analyzer ‘
. y

Fig. 3. VLAM seéurity framework architecture

The framework structure is shown on Figure 3. It consists
of the network probe deployed at the physical virtualization
server and the data collector/analyzer component, which can be

installed on any physical or virtual machine even outside of the
VLAM project infrastructure.

The network probe is implemented by the ulogd2 daemon.
The configuration of the daemon lies in defining arbitrary
number of “Plugin stacks”, each stack consisting of one input
plugin, none, one or more filter plugins and one output plugin.

In VLAM, we currently use two stacks: “security
violations” stack with the NFLOG input plugin and
“traffic/connection accounting” stack with the NFCT input
plugin.

The NFLOG input plugin collects messages from the
iptables/netfilter firewall rules which are crafted to detect
attacks against the VLAM infrastructure — e.g. DoS/DDoS,
port scans, vulnerability exploits etc. We currently do not use
any ulogd?2 filter plugins in the NFLOG stack; we rather rely on
processing implemented directly in the firewall/iptables rules.

The NFCT input plugin collects traffic accounting data. We
have implemented a byte-counter filter which limits the amount
of logged items to only successful connections — that is those
with non-zero amount of data transferred in the reply. Thanks
to the byte-counter filter the overall CPU load induced by the
ulogd? is very small even in the network 100% load. As for the
traffic between the ulogd2 and mysql daemon coming from the
NFCT stack, it is also quite negligible.

At the collector machine, long-term security/traffic analyses
are possible thanks to the network traffic events history stored
in the database. For example, it is possible to include
information about attacking IP address history in every report
issued by the analyser component.

4. CONCLUSION

Although largely unnoticed by the Linux community, the
ulogd?2 provides a very effective way for strengthening security
of servers and networks. This paper shows only one of the
possible deployment scenarios without performance
benchmarks. We are sure that the ulogd2 performance deserves
detailed analysis and we are already working on it to be able to
publish the results very soon.

5. ACKNOWLEDGEMENTS

This work has been supported by Ministry of Education,
Youth and, Sports of the Czech Republic grant
MSMT 2C06008 "VLAM: Virtual Laboratory of
Microprocessor Technology Application”.

We also thank the whole Linux community and especially
the iptables team for giving everyone the possibility to use, to
learn and to contribute to such a great system.

6. REFERENCES

Bliznak, M. (2010). Virtual Laboratory of Microprocessor
Technology Application, Proceedings of the 21st DAAAM
International World Symposium, DAAAM International
Vienna, Editor B. Katalinic, Zadar, Croatia, October 20-23,
2010

Kuna, L. (2009). Moznosti analyzy IP tokd v OS Linux, TU of
Ostrava, http://www.cs.vsb.cz/grygarek/TPS/ - final project
report for “Advanced Computer Network Technologies”
course, Accessed on: 2010-6-27

Neira, P. N. (2006). Netfilter’s connection tracking system,
;login: The USENIX Magazine, June 2006, Volume 31,
Number 3, page numbers 34-39,
http://people.netfilter.org/pablo/docs/login.pdf, Accessed
on: 2010-6-27

Welte, H. (2005). Flow-based network accounting with Linux,
pp- 265-270, Proceedings of the Linux Symposium, Ottawa,
Ontario, Canada, July 20nd—23th, 2005

