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Stage Stg 1 Stg 2 Stg 3 Stg 4 Stg 5
tolerance 0.02 0.02 0.02 0.01 0.02
time limit (s) 10 10 10 10 10
max num of gen. 202 136 148 20 2
number of points 23 34 30 31 31
avrg.dist.measure 0.100 0.088 0.070 0.092 0.039
spread measure 0.380 0.410 0.476 0.501 0.293

Tab. 1. GA and GHA input controls and output parameters 
 

of hybrid optimization algorithm (GHA) that leads to the final 
solution area. 
 
4. PROBLEM SOLUTION AND RESULTS    

ANALISIS 
 

In order to attain practical solutions, multiobjective 
optimization used here will generate and select noninferior 
solution points since any point in Ω that is an inferior point 
represents a point in which improvement can be attained in all 
the objectives. The goal in this optimization is constructing the 
Pareto optima and the algorithm used in process calculation is 
described in (Kalyanmoy, 2001). Our approach finds a local 
Pareto front for multiple objective functions, each of four 
decision variables, using the genetic algorithm followed by a 
hybrid function. We also impose bound constraints on the 
decision variables as noted in model formulation. The input 
controls for genetic algorithm, GA and genetic hybrid 
algorithm, GHA and output parameters are given in table 1. 

The final results for loading of 10,000 cargo units of the 
general cargo are obtained in form of points on Pareto front, 
figure 1, which coordinates are positioned in the space of 
optimal results that satisfy minimum of objective functions. 
That means each point represents minimum of costs and 
associated minimum of operational time, reached along with 
specific combination of number of service places by phase. 
Since there is no unique optimal result, ship operator will be 
able, taking into consideration the real case, take decision  on 
how long the cargo operations will last and get the amount of 
associated costs, and vice versa. 

Figure 2 shows that in the first part (up to 16 h) curve 
quickly descend which may be explained by the fact that the 
ship service time grows inversely proportional to the number of 
service places per phase, resulting in almost linear decrease of 
costs per hour. The second part of curve falls considerably 
slower and asymptotically approaches specific cost value. 
Extreme right points on the Pareto front mark minimal savings 
in costs per hour considering the extension of the duration of 
the service time.  

Lines of the table 2 show some of the iterations of costs and 
service time calculations on Pareto front along with numbers of 
service places in each phase. The results match the expectations 
in performing loading operations on board. If ship operator, in 
the area of optimal solutions, decides for a solution obtained in 
the iteration 14, the operational cost will amount to 2988.06 
mu/h, while the time required for execution will be 16.93 h. 

 

Fig. 1. Pareto front of costs C and service time Wusl 

Iteration C (nj/h) Wusl (h) S1 S2 S3 S4 
11 3031.42 16.15 4 4 12 7
28 3011.57 16.54 4 3 10 5
14 2988.06 16.93 3 4 9 2
• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
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• 
• 
• 

31 2895.52 21.61 3 2 8 3
23 2896.98 22.00 2 2 6 3

 
Tab. 2. Values of objective functions and decision variables for 
some points on Pareto front 

 
In this case, in the first phase three cranes work on four 

cargo holds, in the second phase four forklifts are distributed in 
four holds. Furthermore, nine workers are needed for cargo 
securing and two workers for cargo marking and separation.  

Ship operator, on the basis of data from the table, can 
accurately determine the total costs related to the transhipment 
in the port, and duration of transhipment along with the 
resources needed per phase. Moreover, taking into 
consideration the current state of the shipping market and the 
rates and terms of ports, ship operator takes optimal business 
decision. 

 
5. CONCLUSION 
 

Given the complexity of model with multiobjective 
functions, several decision variables and constrained solution 
space, the approach taken here to search for solution is based 
upon adapted genetic optimization algorithm in combination 
with hybrid optimization algorithm for the purpose of achieving 
improved results. In the space of possible solutions (Pareto 
front) computational process, with variations of different 
methods of crossover and mutation for GA and optimization 
options for GHA produces results that match the experiences 
from practice when performing cargo loading operations on 
board general cargo ship. 

The advantage of suggested process of solution search 
manifests itself in obtaining the space of optimal solutions, 
which provides ship operator with possibility of selecting one 
of them in a broader consideration of business making on the 
shipping market. 

Analogy could be drawn to observe the process of 
unloading, or a combination of cargo loading/unloading, in 
which case phases would be arranged differently, which, may 
be the subject of further research. 
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