

Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679

ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals of DAAAM International

METHODS OF HANDLING XML FILES FOR A DECISION SUPPORT SYSTEM

FRAMEWORK

STANCIU, C[ristina] O[felia] & COJOCARIU, A[drian]

Abstract: XML provides an organized and elegant way of

storing data, the main advantage is adaptability, and also that

XML modeled data are readable by any user. The paper shows

original methods of handling XML files used for data

representation within a decision support system framework.

Key words: XML, decision support system, abstract methods

1. INTRODUCTION

Storing data used for a decision support system in the XML

file has been inspired by the open source project WEKA. The

idea of using the C# programming language together with the

XML format has proven to be a great success, as they are new

and modern technologies. The assembly of the data

representation in the XML format, together with the XSD

schema and applications developed with object oriented

programming languages that offer function libraries for

processing these data models represents a powerful, efficient

and mostly elegant solution [Stanciu 2009].

The XML document handled by the integrated system

represents a so-called relation, the Relation element being the

root node of the XML tree. This element aggregates two major

sub-elements: the attribute definition list (Attributes) and the

instance list (Instances).

2. LOADING AND SAVING XML FILES

The framework needs to be able to load and save files

representing decision relations. For this purpose we attempted

to develop a unitary procedure for input/output operations on

XML files. In this way we materialized a generic abstraction, a

high-level representation of an XML file which implements the

standard input/output operations (all-purpose, applicable to a

wide category of XML files) and also other operations and

published properties.

Technically this abstraction begins from a .NET abstract

class named AbstractXmlDocument. The class prototype is

declared like the following:

public abstract class AbstractXmlDocument

This class will be "aware" of the name of the XML file it

represents. This name can be missing at first (set to null), if the

XML file corresponds to a new file; the file name will not be

set until the class instance is saved. This is achieved with the

technique known as overloading, in this particular case

constructor overloading, which presumes the existence of two

or more methods in the class that share the same name but have

a different number of parameters or different parameter types.

Essentially, the prototypes of the two overloaded constructors

are presented like the following:

public AbstractXmlDocument(string fileName)

and

public AbstractXmlDocument()

 In this way any built system that uses this class will be able
to choose from one of the following variants:

 Creating an XML file with an associated file name
(through the filename input parameter) and loading the

XML contents into memory, provided that the file
exists physically on disk;

 Using the XML abstraction without specifying a file
name and wait for after populating the XML contents
to attempt to save the XML file on disk using a file
name specified during this step.

3. INPUT/OUTPUT OPERATIONS WITH XML

FILES

It must be mentioned from the beginning that the

input/output operations with XML files represented using this
abstract class are making use of the DOM technology [van der
Vlist 02]. Adjacently, these input/output operations will be
aware of an XML schema which they will be using to validate
the XML file.

Given that the AbstractXmlDocument class knows nothing
yet about the format and contents of the actual XML file on
disk, the XML schema details to validate against will have to be
provided by upper levels in the class hierarchy, from derived
classes.

In our situation, these details are being materialized
through:

 The name of the integrated resource that identifies the
XSD file representing the XML schema;

 The XML namespace or the xmlns attribute value that
represents the starting point in schema validation;

 Optional, the name of the .NET assembly containing
the XML schema resource. This will be used only
when the integrated schema resource is not embedded
in the same .NET assembly as the class being
implemented (extending the AbstractXmlDocument
class).

Loading the XML file from disk (and simultaneously
validating it against the schema, if any is specified) is
implemented using the Load method. This method has the task
of creating a proper environment prior to reading the XML file
contents (serializing it through the DOM parser engine). One of
these steps is reading the XML schema, if any, specifying there
is going to be a schema validation step and pointing to a .NET
delegate method which will be receiving and processing any
validation errors or warnings emerged out of the parsing
process. It is only after finalizing all the prerequisite steps
(which will all be omitted if no XML schema is specified) that
an object of the type System.Xml.XmlDocument will be
instantiated and its Load method will be invoked, which will
result in transferring the whole XML contents into memory.

Talking about the XmlDocument class, at this point we can
highlight the fact that the AbstractXmlDocument class can be
looked at as a wrapper class over XmlDocument; we can state
that the class described here wraps up the .NET XmlDocument

class while adding new features like the XML schema
validation.

The Load method implementation is technically described

below:

Assembly assembly;

if (_assemblyName == "")

 assembly = Assembly.GetExecutingAssembly();

else

 assembly = Assembly.Load(assemblyName);

Stream xsdStream =

assembly.GetManifestResourceStream(schemaResource);

schemaReader = new XmlTextReader(xsdStream);

XmlReaderSettings settings = new XmlReaderSettings();

settings.ValidationType = ValidationType.Schema;

settings.Schemas.Add(namespace, schemaReader);

settings.ValidationEventHandler += new

 ValidationEventHandler(LoadValidationErrorHandler);

reader = XmlReader.Create(new

XmlTextReader(fileName), settings);

XmlDocument doc = new XmlDocument();

doc.Load(reader);

this.Load(doc);

The last line of code in this listing is remarkable because it

transfers the processing to another Load method that is supplied

with a parameter of the XmlDocument type. This method is

abstract and overloaded at the same time (which implicitly

forces the class to be abstract as well). This method offers

derived classes the possibility of extracting data from the XML

contents locally (using the XmlDocument input parameter). The

method prototype will be:

protected abstract void Load(XmlDocument doc);

The Load method is supplied with the protected access

specifier in order to be accessed only in AbstractXmlDocument-

derived classes.

The delegate method LoadValidationErrorHandler is in

charge of receiving notifications about errors or warnings that

come up during the parsing process of the XML contents. The

default implementation in the AbstractXmlDocument class is

that of redirecting error messages to the standard error display

(this message will not be visible unless the application using the

class is running in a console window) and of raising an

exception when encountering critical errors. Nevertheless, this

method is declared using the virtual keyword offering derived

classes the possibility of overriding it and supplying a new

behavior when encountering processing errors or warnings.

The method header is the following:

protected virtual void LoadValidationErrorHandler(

object sender, ValidationEventArgs args)

Once we defined the abstraction of a generic XML file

through the AbstractXmlDocument class, we will exemplify

with one of its customizations achieved by deriving from it. In

this case the XML document that needs to be read and written

by the integrated system represents a decision relation. Thus,

we will be defining the RelationDocument class as the

following:

public class RelationDocument: AbstractXmlDocument

Given that the name of the XML file will still be unknown

at the level of the class representing the decision relation (this

file name being a dynamic property of this class – as well as of

the base class), this will remain at the stage of a parameter

passed through the constructor to the RelationDocument class

as well. What we do know, though, are the details referring the

XML schema that will be used to validate any XML document

representing decision relations. At this point of software

development the place within the project of the integrated

resource representing this XML schema should be known, as

well as the namespace for XML files of this type.

Practically, for XML files describing in this paper we have

chosen the namespace urn:localhost:ML.Relation. Also, with

respect to a hierarchical architecture of the files within the

project and placing the XML schema appropriatelly within this

hierarchy, the full name of the integrated resource representing

the XSD schema should be ML.Lib.Relation.Relation.xsd.

In these circumstances the constructor of the

RelationDocument class should take the following form:

public RelationDocument(string fileName) : base(fileName,

"urn:localhost:ML.Relation",

"ML.Lib.Relation.Relation.xsd")

As it can be noticed, the filename parameter stays in place,

being passed to a superior level, as opposed to parameters

identifying XML schema details, which are defined as

constants at this level and passed to the level of the base class

(AbstractXmlDocument) for later use.

A portion of the developer-friendliness offered by the

AbstractXmlDocument class is observed here: the fact that only

one line of source code supplies the necessary and sufficient

information to load, save and validate an XML document

against the schema. These emerge from the strongly-developed

abstraction of the base class. This provides highly simplified

means of instantiating and modeling a specialized class for

handling and managing a certain type of XML document.

The powerful abstraction of the AbstractXmlDocument

class reaches its pinnacle at the stage of implementation of the

loading and saving routines in derived classes. This is

remarkable through the abstract methods Load and Save

defined in the base class, methods that any derived class will be

obliged to implement. Within the derived class, these methods

will have the chance to focus strictly on the XML contents and

extracting information from it, respectively storing data into it.

The form of these methods in the derived class is:

protected override void Load(XmlDocument doc)

and

protected override void Save(XmlDocument doc)

The XmlDocument-typed parameter represents the XML

document used to extract or store data. No other operation is

required upon this parameter, like creating the XML document

or writing the XML signature line in the physical file on disk.

4. CONCLUSION

As presented in this paper, using the AbstractXmlDocument

class powerful abstraction levels will result in having only two

basic concerns when implementing a class that needs to

serialize data to and from an XML file, and perhaps verify that

the file conforms to a pattern defined by an XML schema: that

of extracting data from the XML contents and storing data in

this XML hierarchy.

5. REFERENCES

Hamilton, H., Gurak, E., Findlater, L., Olive, W. (2002),

Knowledge Discovery in Databases, University of Regina,

Canada

Holmes, G., Donkin, A., Witten, I.H. (1994), Weka: A machine

learning workbench, Proceedings of Second Australia and

New Zealand Conference on Intelligent Information

Systems, Brisbane, Australia

HyoungDo, K., An XML-based modeling language for the open

interchange of decision models, Decision Support Systems,

Volume 31, Issue 4, Pages 429-441, October 2001

Stanciu, Cristina – Ofelia, A. Cojocariu, XML Technologies for

Improving Data Management for Decision Algorithms, 20th

DAAAM International Conference, Vienna, 2009

van der Vlist, E. (2002), The W3C's Object-Oriented

Descriptions for XML, O’Reilly Publishing

