Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679
ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Young Researches and Scientist Paper / * Supervisor, Mentor

WEB SERVICES ENGINE FOR THE ANDROID PLATFORM

RADOVICI, A[lexandru] & DRAGOI, G[eorge]*

Abstract: Mobile systems have become more and more
important. This paper describes a platform for implementing
web services among mobile devices running the new Android
framework. While other ports of web containers use classic
approaches for creating the actual services, our system is
design to use Android specific components.

Key words: Android, mobile, web, service, platform

1. INTRODUCTION

Mobile devices have become more and more important.
Together with the evolution of software and hardware, mobile
phones are basically considered as computers that fit into one’s
pocket. Given the increased usage of these devices, the problem
of creating software and services for them has arisen. Building
applications for these mobile devices has to take into account
the following facts: limited long term processing power, limited
memory footprint, real time interruptions (an incoming phone
call), different kind of input methods (usually there is no
keyboard available, rather small screen size etc). Mobile device
software and hardware is very heterogeneous thus
communication between devices is rather difficult. At the time
of writing, the great majority of mobile devices communicate
with computers using some proprietary software and protocols.
We are trying to change this fact by implementing web service
communication to these devices.

The paper will present the implementation of a web service
container for the Android mobile platform. We have chosen this
system due to the fact that it is open source and is expected to
gain a significant market share in the next few years.

2. ANDROID PLATFORM

Android is the mobile platform developed by Google.
Based on an ARM optimized Linux kernel and a simplified user
space library called Bionic, Android brings to life a new java
virtual machine called Dalvik and together with it a new way of
designing applications (Android Fundamentals, 2009). This
virtual machine is optimized to run with a very small memory
footprint and an improved garbage collection system. As it is
based on Linux, Android supports normal C/C++ linked
software. What makes Android different from any other mobile
system is its large collection of libraries and components
provided by the Dalvik virtual machine and its new approach to
software design. Applications are a collection of components
that can interact and be run independently. We can distinguish
five types of components: Activities, Services, Content
Providers, Intents and Broadcast Receivers (Murphy 2009).
Moreover, applications can make use of components from other
applications, just as if they where inside the same program.
This feature can be used instead of dynamic class loading. The
most important component in implementing a web service
platform is creating a web service container. In essence this is a
web server specialized for delivering XML content, this being
the language for web service communication.

3. WEB SERVICE CONTAINER

The only web server implementation that currently exists
on Android is iJetty (iJetty 2010). This is a standard port of the
common web container Jetty, which uses dynamic class loading
and web applications. It has no optimization what so ever for
web services. Another downside of this server is the usage of
dynamic class loading. Dalvik does not use the standard Java
.class files for storing classes, instead using the .dex format.
This means that java standard class loading engine is not
available. Google has provided a mechanism for dynamic class
loading, but does not recommend it as the SDK might change.
Usage of Android application components is recommended.
Moreover, as Android applications are more or less sandboxed
(Brunette 2009), the usage of dynamic class loading requires
the services to be shipped along with the server’s package. This
is not acceptable for us. To overcome these problems, we have
decided to implement our own web service container, called
EasyWeb. As it is specially designed to run on mobile device,
the server implements only a subset of the large HTTP
protocol. This includes only the essentials needed for
request/response actions. EasyWeb is composed out of two
components: the server itself, implemented as a Service and the
settings interface (GUI) implemented as an Activity. This
separation of components takes advantage of the Android
component types and life cycles (Android Fundmentals 2010,
Burnette 2009): the server is running in background and is
started only when needed, the GUI runs as an Activity and is
loaded only very rarely. Mobile devices have limited hardware
resources and processing power. Thus instead of creating a
thread for each request, our web server uses the Worker Pool
strategy of managing connections. A limited number of threads
are created pushed into a pool. When a request is received, it is
queued until a thread becomes free for processing it. The tests
we have performed have achieved the best results two to four
working threads. Web Services have to implement the
EasyWebApplication interface illustrated in figure 1.

EasyWebApplication

+getlD) :int
+ gethlame() : String
+ processRequestiheader : HitpHeader, docurnent : HitpDocument) : void

.
[

L N

HttpHeader HttpDocument

+ get{hame : String) : String

+ postiname : String) : String

+ cookie{hame : String) : String
+ header{name : String) : String

+ getContentTypelcontentType : String) : void

+ getContentLength{cantentLength : int) : void
+ getResponseCode(code @ inf) : vaid

+ printitex : String) - boolean

+ printlnitest : String) :void

+write(data : bvtel) - hoolean

+write(data : bvte[], offset : int, lenath : int) : void
+ getPrinter() : Printiriter

+ getiriter]) : DatadutputStream

+ getCookieiname : String, walue : String) : vaid
+ getCookieiname : String, value : long) : vaid
+ remaveCookie{name : String) : vaid

Fig. 1. Web Service proxy class its associated classes

As dynamic class loading is avoided, services are written as
Android components, Content providers or Services using
proxy classes on the server side as well as on service
implementation side. These have to be first registered with the
server, before being used. The server component is controlled
via an AIDL interface (Murphy 2009). Besides the start and
stop functions, the server exports functions for adding and
deleting services.

4. IMPLEMENTING WEB SERVICES

4.1 Content Provider & Service Implementation

An Android Content Provider component is in fact a
database that provides information upon request, similar to an
SQL query. The query result is a cursor, or in other words, a
result set. This can contain text and binary data as well. In order
to use content providers for implementing web services, we
have built a proxy class inside the server. This class transforms
the HTTP request into query and sends it to the content
provider where it is processed and a table with one row and one
column is returned. This column contains the data that needs to
be passed as a result for the HTTP request.

To make life easier for the programmer, we have built
another proxy class on the content provider side that transforms
the received query into a standard HTTP request and provides
the typical functions for generating the HTTP response,
converting it into a result set that is passed back to the server.
Figure 2 illustrates the calling of such a web service. The
request processor calls the server proxy class, the class searches
for the Content Provider, sends the query and waits for the
result. In turn, the Content Provider proxy converts the query
into a HTTP request and runs the service (processRequest()).

Another method of implementing the actual web service is
using the android Service component. This has the advantage of
running in its own thread or process, separated from the service
container. This means that the worker thread can pass the
request and handle another request while the Service processes.
The worker thread will be notified when the result is ready to
be sent to the client. Communication between the service
container and the actual web service is done via two proxy
classes, one inside the server and the other one inside the
service. The latter implements an AIDL interface used by the
first one. The important advantage of this method is that the
server proxy class is able to suspend its thread until the service
processes the request. Besides being able to be used by
computers, web services results should be able to be used by
humans as well.

The best way of doing this would be to generate HTML
responses instead of XML ones. Still, this would mean serious
modification from the service point of view. Moreover, creating
and delivering good HTML interfaces requires a considerable
processing power from the phone.

. ~ °, Request - . Android
..~/ Processor Content Resolver
A

query (...) | Cursor;, HitpDocument

v

3 Content Provider
ﬁ Web Application
Y
processReqguest()
HttpHeader
-]
Web Application » HttpDocument

Fig. 2. Web Service implemented as a Content Provider

To overcome this problem, we have used the XSLT
transform (Kay 2004). Style sheet transformations transfer the
user interface processing to the client, in fact to the browser.
The server provides a normal XML response and together with
it a style sheet (XSL) with directions on how the data should be
transformed into HTML. Based upon our tests, we can say that
the processing power required on the phone diminishes by
about 20 times.

4.2 Security Issues

When it comes to mobile phones, security is a very
important issue. If not controlled properly, programs running on
the phone might cause serious damage by releasing private data
on the network or accessing paid network services. When it
comes to Service components that are running as separate
applications, permissions applied by Android (Security and
Permissions 2010) on these service applications are not enough.
Due to the fact that they are able to communicate with the
outside world through the server, the user has to be aware of
this. This is why we have implemented a supplementary, but
yet not enough, security layer.

If the service is implemented as a Content Provider, which
is a passive component, security is straightforward. The user is
the one that has to register the content provider to the server.
On the other hand, if the service is an Android Service, thus an
active component, the service is the one that has to register with
the server. In order to do this, the server will require a passkey
that is known by the user. The service will have to ask the user
for the passkey in order to register. This way assures that the
user is notified of the registration.

5. CONCLUSION

With so many types of mobile devices being developed, a
common communication platform between them and other
computer-powered devices is necessary. The best solution
known so far is the Service Oriented Architecture. This paper
has presented the implementation of o web service platform for
the Android framework. We have created a specialized service
container, or server, which obeys and uses the most of the
Android technology. Dynamic class loading is avoided by using
Android specific components for implementing the actual
services. This creates also some security issues that have been
partially dealt with.

Last but not least, we have proposed a way in which web
services can be used by computers and by humans as well,
without any modification on the code or any overhead on the
mobile device. To sum up, we can say that with this paper we
have followed some steps in creating a serious web service
mobile platform, platform that will allow mobile devices to
communicate with each other regardless of their brand,
operating system or software.

6. REFERENCES

Burnette, E.; (2009). Hello, Android: Intrdoucing Google’s
Mobile Development Platform, The Pragmatic Bookshelf,
ISBN: 1-934356-49-2, USA

Kay, M.; (2004). XSLT 2.0 programmer’s Reference, Third
Edition, Whiley Publishing, ISBN: 0-764-56909-0, USA

Murphy, M.; (2009). Beginning Android, Apress, ISBN: 978-1-
4302-2419-8, USA

faleie (2010) http://developer.android.com/guide/topics
fundamentals.html - Android Developers - Application
fundamentals, Accessed on: 2010-01-10

*** (2010) http://developer.android.com/guide/topics/security/
security.html, Security and Permissions, Accessed on:
2010-03-28

*** (2010) http://code.google.com/p/i-jetty/, Project Hosting on
Google Code - iJetty, Accessed on: 2010-01-10

