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ON A STABILITY OF A QUASIPOLYNOMIAL

PEKAR, L[ibor] & PROKOP, R[oman]

Abstract: The Laplace transform of a differential equation
describing a system which contains delays in feedback loops
results in a ratio of quasipolynomials, instead of obligatory
polynomials as for delayless systems. Quasipolynomials can be
then expressed as a linear combination of products of delay
(exponential) terms and s-powers. The role of transfer function
poles and that of the characteristic quasipolynomial is the same
as in the traditional case. This paper utilizes the argument
principle (the Mikhaylov criterion) in order to study stability
properties of a selected quasipolynomial. Upper and lower
bounds for a free real parameter are found via lemmas and
theorems which are not proven due to the limited space. The
obtained results are examined by a simulation example.
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1. INTRODUCTION

A generic feature of many real-life systems and processes is
the existence of delays or latencies in their dynamics. The
mathematical description of such systems can yield a model in
the form of (an ordinary or rather a functional) linear
differential equation (Bellmann & Cooke, 1963) in the
neighborhood of an operating point. Direct application of the
Laplace transform results in a transfer function as a ratio of so
generalized polynomials, so called quasipolynomials (EI’sgol’ts
& Norkin, 1973) which are characterized as a linear
combination of products of delay (exponential) terms and s-
powers. Its spectrum is determined by roots of the denominator
(as usual) and it has some interesting features, e.g. the number
of poles is infinite. Similarly, even if conventional input-output
process delay appears only, the characteristic closed loop
equation is in the form of a quasipolynomial rather then a
polynomial. This problem is usually solved by a rational
approximation of exponential terms which is based e.g. on the
McLaurin series expansion (Prokop & Corriou, 1997).
Unfortunately, one can thus loose a part of system dynamics
information.

For stability analysis, an affable feature of a class of
quasipolynomials represented by the studied one is the fact that
the argument principle (i.e. the Mikhaylov criterion) holds (e.g.
in Gorecki et al., 1989; Kolmanovskii & Myshkis, 1992). In
this contribution, a selected (retarded) quasipolynomial is
studied via unproven lemmas, observations and theorems. This
quasipolynomial can represent a characteristic one of the closed
loop system when control system with input-output and internal
delays by a proportional controller. The aim is to find lower and
upper bounds for a selectable real parameter such that the
quasipolynomial is stable. The information about the limits can
serve engineers to decide quickly about the stability or to set
the free parameter properly.

The Mikhaylov criterion can be utilized for and limited to
stability analysis of other retarded quasipolynomials as well.
The obtained results are then verified using a simulation
demonstrative example. Although the presented analysis is
quite detailed, some statements have been deduced without
proving them, which is the task to be solved in the future.

2. RETARDED QUASIPOLYNOMIAL

The selected retarded quasipolynomial which can represent
the characteristic quasipolynomial of a feedback control system
reads

m(s)=s +brexp(—zs)+aexp(-%) 1)

wherea, r #0eV, b, 7,3>0¢eV. The task is to find upper and

lower bounds for r which stabilizes (1). This problem can be
solved in geometric-like way using the principle argument
which holds for quasipolynomial (1) as well. According to this
principle, quasipolynomial (1) has all roots in the open left-half
complex plane iff

Aarg m(s):% %)

s=wj,we[0,0]

see e.g. (Myshkis, 1972). The whole following (here unproven)
lemmas and theorems are based on the geometrical presentment
of condition (2).

3. QUASIPOLYNOMIAL STABILITY FEATURES

Unproven statements about the stability properties of (1)
follow.

Lemma 1: For w = 0, the imaginary part of the Mikhaylov
curve of quasipolynomial (1) equals zero and it approaches
infinity for o — .

Lemma 2: If (1) is stable, then the following inequality
holds

r>— (3)

and thus the Mikhaylov curve starts on positive real axis.
Lemma 3: A point on the Mikhaylov curve lies in the first
quadrant for an infinitesimally small @ =A >0 iff
ag+brr<l 4)
This point lies in the fourth quadrant iff
ad+brz>1 (5)

Lemma 4: If a, b, r are bounded, then Re{m(ja))} is
bounded for all @ > 0.
Proposition 1: If (3) and (4) are satisfied together, then

a(9-r)<1 (6)

Proposition 2: If the following inequality holds



a(S —7)>1 @)

then the appropriate Mikhaylov plot of a stable

quasipolynomial (1) passes the fourth quadrant first.
Proposition 3: There always exists an intersection of the
Mikhaylov curve with the imaginary axis.
Definition 1: Let (3) holds. A crossover frequency «, is an

element of the set
Q, ={o:o>0,Re{m(jo)}=0,Im{m(jw)} =0} 8

for some crossover gain r, . A crossover frequency, hence, has
to satisfy

@, c0s(zw, )= a(sin((9 -7 )a,)) )
The crossover gain r, can be calculated as

L@ —asin(Ya,) 10)
°" bsin(ca,)

Definition 2: Let (3) holds. The critical frequency . is
defined as

0, = min{a): 0 0,Refm(j)) = 0. Imfm(jo)} =0,
(11)

s=wj,we[0,wy] s=wj,we[w,,»]

Aargm(s)=0,Aargm(s)= %}

for the corresponding critical gain r. given by (10), where @,
is placed instead of «,, and a=0,b,z,9>0. Obviously,
w; €Q, and the critical frequency is the least crossover

frequency for which the argument change is zero for
o €0, ] and consequently it equals z/2 for w e [w,,=].

Theorem 1: If sin(m)c)>0, then quasipolynomial (1) is
stable iff

-a_, o —gsin(ga)c) 12)
b bsin(ze )

Contrariwise, if sin(ra;)<0, then quasipolynomial (1) is
stable iff

o, —asin(9w ) _ —a

T bsinfeag) b

(13)

where @, is the critical frequency.

Remark 1: It is not always easy to check, mainly without
displaying the Mikhaylov plot, whether a crossover frequency
calculated by (9) is critical and thus whether it can be used in
Theorem 1. Sometimes only the sufficient stability condition is
searched for; in this case, it is possible to use the following
finding. Obviously, if the Mikhaylov plot for r, does not
crosses the negative imaginary semi-axis, then the crossover
frequency is critical, i.e. w, = w. (if there is no less one). This

gives rise to the sufficient condition for @, and, consequently,

for the quasipolynomial stability according to (12) and (13).

Remark 2: Definition 2 and Theorem 1 suggest situations
when the quasipolynomial stabilization by the suitable choice
of r is not possible. These are the two unpleasant possibilities
which can come into being:

1) If ». does not exist. Thus, although Q, is non-empty set, it
may not contain @, = @ .
2) If r could not satisfy (12), i.e.

o, —asin(Je ) _ -a

bsin(ra.) b 149
4. EXAMPLE
Consider a quasipolynomial
m(s)=s +rexp(-1.15)-5exp(s) (15)

with a free parameter r. One can observe that o, =0.953
which gives r. =5.803, according to (10). Hence, Theorem 1

yields the stabilizing limits 5<r <5.803. Choose r = 5.4, the
corresponding Mikhaylov plot is displayed in Fig. 1.

2%

) Retm{jal}

Fig. 1. The Mikhaylov plot of (15) forr = 5.4

5. CONCLUSION

The presented contribution has introduced some stability
properties of a selected retarded quasipolynomial using the
argument principle. The goal of the paper has been to specify
the admissible limits for a selectable real parameter. Unproven
statements have been presented because of the limited space. A
simulation example figures the Mikhaylov plot of a stable
quasipolynomial to demonstrate and verifies presented findings.
The principle can be utilized for and limited to stability analysis
of other retarded quasipolynomials as well.
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