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STRUCTURAL AND KINEMATIC MODELING OF A QUADRUPED BIOMECHANISM

GEONEA, I[onut] D[aniel]; UNGUREANU, C[ezar] A[lin] & MICU, Cf[ristina]

Abstract: In this paper we present the kinematic model of a
biomechanism which represent the legs of a four legged
mammal. The anterior legs and posterior are realized as plane
mechanisms, with articulated bars. Each anterior leg has a
complex structure with three closed contours, mean while each
posterior leg has only two closed contours. Each mechanism is
actuated by an electric motor. The geometric and kinematic
modeling of the anterior leg mechanism is achieved by means
of some vectorial and scalar equations. Also, the kinematic
simulation is achieved by means of ADAMS software,
considering as basis, the upper platform of each mechanism.
Key words: biomechanism, kinematic, modeling.

1. INTRODUCTION

In case of four legged mammals, the structure of anterior
and posterior legs is very similarly by the structure of most
majorities of actual four legs quadrupeds (Buzea, 2005). To
some quadrupeds, the anterior legs are short that those
posterior. To remark, that at quadrupeds, the anterior legs have
the degree of mobility larger than the posterior legs.

By physical modeling of a dog (fig. 1) we obtain a
biomechanism (mobile biorobot), in which the legs are realized
like plane articulated kinematic chains (Antonescu&Buzea,
2005).

Fig. 1. The picture of the dog as a quadruped biomechanism

2. KINEMATIC SCHEME AND THE MOBILITY
OF THE BIOMECHANISM

The kinematic scheme of the quadruped biomechanism is
realized in vertical longitudinal plane (fig. 2), in which are
represented the plane articulated mechanisms of those two legs,
from rear (fig. 2a) and front (fig. 2b). The booth mechanisms
are articulated in the upper side to a horizontal link, which
represent the body of the physically modeled dog.

The joints Ay and B, of each mechanism to the upper
mobile platform (fig. 2) are considered as basis joints, by this
reason this platform has been noted with 0.

Each from those two mechanisms (rear and front) has a first
kinematic chain, the four bar mechanism AyABB,, which is
formed from the kinematics chains 0, 1, 2 and 4. The second

kinematic chain of each mechanism is the four bar articulated
mechanism ACED, with the kinematic elements 1, 2, 4 and 5
(fig. 2a) or BCED, from the elements 2, 3, 4 and 5 (fig. 2b).
The mechanism of the front leg contain another kinematic chain
DGHF (fig. 2b), which is formed from the kinematic elements
2,5,6and7.

The mobility M, of each from those two plane

mechanisms is calculated with the Dobrovolski formula:
5
My =(6-f)n— > (k- f)C, @)
k=f+1
which for f = 3 (plane mechanisms) become the
Gribler-Cebasev formula:
5
My, =3n-Y (k-3)C, =3n-2C,-C, @
k=4
where the class of the kinematic joint distinguish the imposed
restrictions (k=5, k=4).
To calculate the mobility of those two mechanisms (fig.
2a, 2b) we use the formulas (1) and (2):

ayM,, =31-2C, -C, =3x5-2x7-0=1

b)Mys =3n—2C; —C, =3x7-2x10-0=1
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Fig. 2. Kinematical scheme of the mechanisms from posterior
legs (a) and anterior (b)

3. KINEMATIC MODELLING OF THE
ANTERIOR LEG

The mechanism has three independent contours (fig. 2b)
1) - ABBAA, (03210), 2) — BCEDB (34523) and 3) -
GDFHG (25762). We choose a coordinate system with the
origin in the fixed joint A, (fig. 3), having the axis Agx and Agy
orientated from right to left, respectively from upper to bottom.



The closing vectorial equation of the first contour (03210)
is writhed explicitly (fig. 3):
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Fig. 3. The vectorial configuration of the first kinematic chain

We arrange the terms of equations (3), that in the left part
to be the vectors which contain the unknown (the angles ¢, and
@3), and in the right side to be the vectors known as size and
direction (the angle ¢, is the independent parameter, being
imposed in certain give interval):

ﬁ+ﬁ250%+m @)

We introduce the notations: BOAOZTO, AOA:F,

1

E’-\ = I;, @ = fs else the vectorial equation (3”) is writhed
under a convenient form:

L+l =1, +1, 4

Projecting the vectorial contour on the coordinate’s axis

Aox and Agy (fig. 4) we obtain two scalar equations equivalent
to the vectorial equation (5):

I, cosp, +1, cosg, =1, cosgp, +1, cosg,; 5)
I, sing, +1;sin @, =1, sin @, +1, sin @,.
The nonlinear system of equations (5) can be resolved by
eliminating one of two unknown ¢, and ¢s.

For that the system is writhed more compactly, under the
form:

{Iz cos ¢, +1; cos g, =b, (,); )
1, sin @, +1;sin g, =b, (¢,).
where we have used the notations:
b, (¢,) =1, cos @, +1, cos g,
b, (p,) =1,sin @, +1, sin ¢,.

To calculate the angle ¢, we isolate the terms which
contain the other unknown @s:

I,cosp, =b, -1, cose,; ©)
l,sing, =b, —1,sin ¢,.
After square up of those two equations (6) and summing,
it results:
12 =12 +b’ +bZ —2l,b, cosp, —2l,b, singp, (7)
The obtained expression (8) is a trigonometrically
equations with variable coefficients, under the form:

A(p)sin ¢, +By(p)cosp, +C(@) =0 (@)
where the variable coefficients have the expressions:

A1(¢l) = 2|2b2 (501); Bl(?’l) = 2|2b1((p1); 9
Ci(p) = |32 - |22 - b12 () - bz2 ()
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With the help of formulas sin ¢ = il cosp = T

the solutions of the equations (7) are deducted under the form:

A £ A’ +Bf -C (10)

= 2arct
@, g B,—C,

Angle (deg)

Angle (deg)

4. DIAGRAMS OF ANGULAR DISPLACEMENTS
VARIATIONS

We consider the uniform movement of the motor element

1 (fig. 3). With the help of the MSC.ADAMS software we
simulate the movement of the anterior leg for the angle @; =
520,
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Fig. 4 . Law of variation for the angle ¢,
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Fig. 5. Law of variation for the angle @3
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Fig. 6. Trajectory of F joint between elements 6 and 7
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