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Abstract: In this paper we present the kinematic model of a 

biomechanism which represent the legs of a four legged 

mammal. The anterior legs and posterior are realized as plane 

mechanisms, with articulated bars. Each anterior leg has a 

complex structure with three closed contours, mean while each 

posterior leg has only two closed contours. Each mechanism is 

actuated by an electric motor. The geometric and kinematic 

modeling of the anterior leg mechanism is achieved by means 

of some vectorial and scalar equations. Also, the kinematic 

simulation is achieved by means of ADAMS software, 

considering as basis, the upper platform of each mechanism. 
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1. INTRODUCTION 
 

In case of four legged mammals, the structure of anterior 

and posterior legs is very similarly by the structure of most 

majorities of actual four legs quadrupeds (Buzea, 2005). To 

some quadrupeds, the anterior legs are short that those 

posterior. To remark, that at quadrupeds, the anterior legs have 

the degree of mobility larger than the posterior legs. 

By physical modeling of a dog (fig. 1) we obtain a 

biomechanism (mobile biorobot), in which the legs are realized 

like plane articulated kinematic chains (Antonescu&Buzea, 

2005). 

 

 
Fig. 1. The picture of the dog as a quadruped biomechanism 

 

2. KINEMATIC SCHEME AND THE MOBILITY 

OF THE BIOMECHANISM 
 

The kinematic scheme of the quadruped biomechanism is 

realized in vertical longitudinal plane (fig. 2), in which are 

represented the plane articulated mechanisms of those two legs, 

from rear (fig. 2a) and front (fig. 2b). The booth mechanisms 

are articulated in the upper side to a horizontal link, which 

represent the body of the physically modeled dog. 

The joints A0 and B0 of each mechanism to the upper 

mobile platform (fig. 2) are considered as basis joints, by this 

reason this platform has been noted with 0. 

Each from those two mechanisms (rear and front) has a first 

kinematic chain, the four bar mechanism A0ABB0, which is 

formed from the kinematics chains 0, 1, 2 and 4. The second 

kinematic chain of each mechanism is the four bar articulated 

mechanism ACED, with the kinematic elements 1, 2, 4 and 5 

(fig. 2a) or BCED, from the elements 2, 3, 4 and 5 (fig. 2b). 

The mechanism of the front leg contain another kinematic chain 

DGHF (fig. 2b), which is formed from the kinematic elements 

2, 5, 6 and 7. 

The mobility 
bM  of each from those two plane 

mechanisms is calculated with the Dobrovolski formula: 
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which for 3f  (plane mechanisms) become the 

Grübler-Cebâşev formula: 
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where the class of the kinematic joint distinguish the imposed 

restrictions (k=5, k=4). 

To calculate the mobility of those two mechanisms (fig. 

2a, 2b) we use the formulas (1) and (2): 
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Fig. 2. Kinematical scheme of the mechanisms from posterior 

legs (a) and anterior (b) 

 

 

3. KINEMATIC MODELLING OF THE 

ANTERIOR LEG 
 

The mechanism has three independent contours (fig. 2b) 

1) - A0B0BAA0 (03210), 2) – BCEDB (34523) and 3) - 

GDFHG (25762). We choose a coordinate system with the 

origin in the fixed joint A0 (fig. 3), having the axis A0x and A0y 

orientated from right to left, respectively from upper to bottom. 

.12302732 321 NCCMb



 

 

The closing vectorial equation of the first contour (03210) 

is writhed explicitly (fig. 3): 

 BABBAAAB 0000
  (3) 

 

 
Fig. 3. The vectorial configuration of the first kinematic chain 

 

We arrange the terms of equations (3), that in the left part 

to be the vectors which contain the unknown (the angles φ2 and 

φ3), and in the right side to be the vectors known as size and 

direction (the angle φ1 is the independent parameter, being 

imposed in certain give interval):  

 AAABBBBA 0000
  (3’) 

We introduce the notations: 
000 lAB


, 
10 lAA


, 

2lBA


, 
30 lBB


, else the vectorial equation (3’) is writhed 

under a convenient form: 
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Projecting the vectorial contour on the coordinate’s axis 

A0x and A0y (fig. 4) we obtain two scalar equations equivalent 

to the vectorial equation (5): 
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The nonlinear system of equations (5) can be resolved by 

eliminating one of two unknown φ2 and φ3.  

For that the system is writhed more compactly, under the 

form: 
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where we have used the notations:  

;coscos)( 110011 llb

.sinsin)( 110012 llb  

To calculate the angle φ2 we isolate the terms which 

contain the other unknown φ3: 
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After square up of those two equations (6) and summing, 

it results: 

 
222212

2

2

2

1

2

2

2

3 sin2cos2 blblbbll  (7) 

The obtained expression (8) is a trigonometrically 

equations with variable coefficients, under the form: 

 0)(cos)(sin)( 11211211 CBA  (8) 

where the variable coefficients have the expressions: 
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With the help of formulas 
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the solutions of the equations (7) are deducted under the form: 
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4. DIAGRAMS OF ANGULAR DISPLACEMENTS 

VARIATIONS 

We consider the uniform movement of the motor element 

1 (fig. 3). With the help of the MSC.ADAMS software we 

simulate the movement of the anterior leg for the angle φ1 = 

52º. 

 

 
Fig. 4 . Law of variation for the angle φ2 

 

 
Fig. 5. Law of variation for the angle φ3 

 

 
Fig. 6. Trajectory of F joint between elements 6 and 7 
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