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Abstract: The purpose of this paper is to generalize the method 

of finite differences described in (Kollats, 1969). For obtaining 

of interpolation polynomials, the matrixes and method of 

uncertain coefficients are used. The essential simplification of 

the calculation formulae is received; in particular case they are 

the L. Kollats' formulas. The accuracy of the used approach is 

estimated in same way as it is made in the classical method of 

finite differences. The use of matrix symbolics gives the 

convenient tool for realization of calculations by computers. 

The numerical results are presented as well. The received 

results can be applied to the solution of boundary value 

problems of various classes and to increase the accuracy of the 

finite elemet method.  
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1. INTRODUCTION  
 

The theory of the method of finite differences is based on the 

theory of the approximation of functions, when values of them 

in discrete points are known. For this purpose, the interpolation 

polynomials obtained by the method of the uncertain 

coefficients are applied. Such approximation is possible to 

execute without resorting to the finite difference schemes 

(Jensen, 1972).  The method of uncertain coefficient can be 

used as for the traditional method of grids as for the “improved 

method of grids", which has been developed (Kollats, 1969) for 

solution of partial differential equations especially. The method 

of grids allows to reduce a task of continuous analysis to a 

problem of solution of system of the algebraic equations. The 

accuracy of the used interpolation polynomials is established by 

the well-known formulas from literature. 

 

2. APPROXIMATION BY METHOD OF 

UNCERTAIN COEFFICIENTS 
 

Let's consider the closed interval [a,b] shown in Fig. 1 and 

which is a part of wider interval [A,B]. We set a task to 

approach the given function y = f (x) by the method of 

uncertain coefficients. The arbitrarily located interval [a,b], 

along an axis х with length l= b-a,  is divided to  n equal parts 

with length h = (b-a)/n.  
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Fig. 1. The closed interval of [a,b] 

 

It is required to find coefficients ia of the interpolation 

polynomial Pn (x) of degree n 
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Using dimensionless argument   given in Eq. (2) 
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the polynomial Pn (x)  in Eq. (1) can be rewritten in matrix 

notation as follows 
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where i are the coefficients of the  interpolation polynomial

 
nP . 

Substitution of the integer values of the dimensionless 

argument   and corresponding values of function y to the Eq. 

(2), the system of equations for calculation of  are obtained  
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where nW   - Vandermonde matrix. 

Once the coefficients {α}
 
from Eq.(4) are determined, we can 

rewrite Eq. (3) as follows 

                   

         
1 121 ...

n

TT n
n nP W y W y    

            (5)  

 

Example.  Approximate a broken line consisting of straight 

lines y = 0 and y = -12 (x - 2) by the fourth degree polynomial 

shown in Fig. 2. 
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Fig. 2. The interpolation of broken line 

 

It should be noticed, that the beginning of coordinates of 

interpolation polynomials can be changed arbitrarily, but 



 

 

changes in the order of nodes and corresponding ordinates is 

not allowed in any event. 

 

3. INTERPOLATION OF DERIVED FUNCTIONS 
 

From the Eq. (5) follows, that for calculation of derivative of 

interpolation polynomial, it is sufficient to differentiate only the 

matrix-line   T. For example, the third derivative of the 

polynomial in Eq. (5) will be defined as 
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It is important to know the values of derivatives in the nodes of 

interpolation. These values are obtained easily from the Eq. (8), 

if it is supposed, that   accepts consistently the values as:  = 

0, 1, 2, …, n. At n = 4 the third derivative from  
nP  will be 
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where    4  is a square matrix. The lower index of the matrix 

specifies the polynomial order, and upper index specifies the 

derivative order. The foregoing formulae for differentiation of 

functions, which are given in discrete points, are generalization 

of the classical formulae of numerical differentiation. The 

accuracy of the method can be established in same way, as it is 

made in the classical methods (Korn & Korn, 1968).  

The generalized matrix   m
nO , which simultaneously carries 

out operations of interpolation and differentiation of function 

{y} both simultaneously, is given by a vector according to Eq. 

(7) as 
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We shall confine ourselves to consider only the differential 

equation with zero regional conditions. In the case of general 

boundary conditions it is required to apply the matrixes, which 

are interpolated on Ermit. So we have 
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with y(0)=0 and y(n)=0,  where    )(,)(  rg  and  )(s  are 

diagonal matrixes with the corresponding values of functions 

)(),(  rg  and )(s  in points or nodes of interpolation, )(f  

is free function in the right part in the same points or nodes. 

Taking into account Eq. (7) and Eq. (8), the system of the linear 

algebraic equations in Eq. (9) in a matrix form is 
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where           )()()( '"  sOrOgD nn  is a matrix 

operator of given differential equation.  

The solution of Eq. (10) can be found with inverse matrix as 
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4. NUMERICAL RESULTS 
 

For an illustration we consider Euler problem shown in Fig. (3).  

 The boundary conditions at the ends of the beam are    

    00  lvv . 
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Fig. 3. Beam loaded by the axial force F, when (n=4) 

 

Using the operator  2O  in the Eq. (10) and don’t taking into 

account the overlapping of intervals, we receive the critical 

force value 
2/38.9 lEIFkp   with an error 5.2 %. 

Applying the operator  4O   (10), we receive
2/395.9 lEIFkp 

with an error 5.0 %. Increasing the division numbers to n=8 and 

using operator  2O  , we receive 
2/79.9 lEIFkp   with an error 

0.81 %. 

Applying operator  4O   in the Eq. (8) in case of double number 

of nodes and using the overlapping of intervals, the value of 

critical force will be 
2/87544.9 lEIFkp  with an error 0.05 %. 

 

5. CONCLUSION 
 

The received formula allows to approximate the functions and 

their derivatives not resorting to differences as it is made in a 

classical method of grids. The use of overlapping of 

interpolation intervals allows to increase an accuracy of the 

solution. The calculation results show that it is possible to 

adjust the accuracy of the solution either by changing the 

degree of the interpolation polynomial or with the help of 

overlapping of intervals. This is the main difference not only 

from usual, but also from the “improved” method of grids. The 

received results can be applied to the solution of boundary 

value problems and to increase the accuracy of finite element-

finite difference method. Especially, it is suggested to use the 

given approach for calculation of stresses in threaded joints 

(Aryassov & Petritshenko, 2008) and the eigenvalues of 

orthotropic plates (Aryassov & Petritshenko, 2009).  

In future, the given approach will be extended to the two 

dimensional boundary value problems as well. 

 

6. REFERENCES 
 

Aryassov, G; Petritshenko, A. (2008). Analysis of stress 

distribution in roots of bolt threads. Proceedings of the 

18th International DAAAM Symposium, Katalinic, B. 

(Ed), pp. 0035-0036, ISSN 1726-9679, Trnava, Nov. 

2008, DAAAM International, Vienna  

Aryassov, G; Petritshenko, A. (2009). Study of free vibration of 

ladder frames reinforced with plate. J. Solid State 

Phenomena, Vols. 147-149, (Jan. 2009), pp. 368-373, 

ISSN 1662-9779 

Jensen, P, S. (1972). Finite difference techniques for variable 

grids. Computer & Structures, Vol. 2, Iss. 5, (Oct. 1972), 

pp. 17-29, doi:10.1016/0010-4485(72)90029-2 

Kollats, L. (1969). Numerical methods of the decision of the 

differential equations. Machinostrojenije, Moscow 

Korn, G; Korn, T. (2000). Mathematical Handbook for 

Scientists and Engineers. Dovers Publications, Inc. ISBN 

0486411478 




