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where the last row coefficients follow from the closed-loop 
characteristic polynomial: 
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Similarly to the previous method, the determination of the 
stabilizing area(s) can be done using a test point within each 
region. 
 
5. ILLUSTRATIVE EXAMPLE 
 

Consider a third order controlled system given by transfer 
function: 
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First, the Tan’s method has been applied. For plant (8), the 

relations (4) take the final form: 
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Solution of (9) leads directly to pairs of PI controller 
coefficients which constitute stability boundary locus. 

Alternatively, for Kronecker summation method, the matrix 
(6) is: 
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So, one has to calculate the pairs ( ),P Ik k  which fulfil (5). 

Again, these values define the curve splitting the plane into 
stable and unstable regions. 

Both approaches result in the stability boundary locus as 
depicted in fig. 1. Moreover, the fact that the inner space 
represents the region of stability can be easily tested using 
arbitrary point ( ),P Ik k  from relevant part and calculating 
corresponding closed-loop characteristic polynomial. 

 

 
Fig. 1. Region of stability for system (8) 
 

Moreover, both methods can be further embellished via so-
called sixteen plant theorem (Barmish et al., 1992); (Barmish, 
1994) in order to make them usable for robust stability of 

closed loops with PI controllers and interval plants (Tan et al., 
2006); (Matušů, 2008). 

Obviously not all possible stabilizing combinations from 
fig. 1 would comply with requirements under real control 
conditions (negative gain, performance specifications, etc.). 
However, selection of the final controller according to user 
demands is another task (Matušů et al., 2010b). 
 
6. CONCLUSION 
 

The paper has been focused on analysis of two recent 
techniques to determination of stabilizing PI controllers in order 
to highlight the practical computational differences of the 
methods. This comparison has been done by means of simple 
example in which the third order controlled system has been 
stabilized 
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