Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679
ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals of DAAAM International

=\

TURNING NEARSHORING INTO A SUCCESS MANAGING TECHNICAL
BACKGROUND DIFFERENCES

MOLDOVEANU, A[lin] D[ragos] B[ogdan]; ASAVEI, VJictor]; MOLDOVEANU, F[lorica]; MORAR, A[nca] -
A[ndreea]; EGNER, A[lexandru] I[onut] & BOIANGIU, C[ostin] A[nton]

Abstract: We present here the results of a 3 year long
nearshoring experiment, conducted in a semi-controlled
academic environment. The experiment involved teams of 10-15
people from 6 European universities and proved that the
biggest issue in nearshoring lies in the difference between the 2
involved teams in terms of technical background differences.
Key words: nearshoring, offshoring, outsourcing, background

1. INTRODUCTION

As types of outsourcing, offshoring and nearshoring are
important means of reducing software costs and sometimes also
improving quality. However promising, they must be perfectly
understood as they come with intrinsic risks. Software life cycle
and team knowledge must be carefully chosen and adapted.

This article presents an academic nearshoring experiment
involving teams from 6 universities of UE countries and the
resulted lessons and conclusions.

2. IT OFFSHORING / NEARSHORING

2.1 Offshoring vs. Nearshoring
Outsourcing is one of the modern successful approaches to

reduce costs (and sometimes also improve quality) in software

development and also in other hi-tech areas.

While “outsourcing” appeared during the 1980s and there
are a lot of success stories and specialized structures that
promote outsourcing, it still comes with some particularities
that need to be considered carefully to eliminate risks (Wiener,
2007; Karle & Schoenthaler).

Offshoring means outsourcing to a company from another
country. Offshoring appeared from economical reasons, due to
the lower cost of software development in some countries from
Asia, like India and China. Many countries from USA, Canada
and some from west Europe have obtained huge benefit on cost
savings by offshoring in such countries due to wage difference
of cost of hiring and training combined with high quality skills.

Nearshoring is a particular case of offshoring — to providers
in nearby countries. Numerous companies from West-Europe
offshore their IT processes and services to companies from
Central and Eastern Europe (Deutsche Bank Research, 2006).

Compared with offshoring, nearshoring offers benefits:

e Geographic proximity, enabling easy deployment of project
team members, during the project’s critical phases;

e Cultural closeness, an identical time zone and the service
provider’s knowledge of the local and English languages
facilitates the communication between the offshoring team
and the provider’s team, project management and control;

e Shorter development times
So basically nearshoring reduces the risk of offshoring,

since the outsourcing country is closer geographically and in

cultural aspects but still lower in cost than the local country.

Compared with traditional offshoring locations CEE wages
are higher but communication more efficient (Deutsche Bank
Research, 2006). The region is recommended for more

sophisticated services. For simpler IT services the traditional
offshore locations, such as India, should be preferred.

2.2 Issues With Off and Near Shoring

The economic significance of offshoring is debated.
Dislocation of technology in the provider’s country reduces
employment in the offshoring company’s country. But,
offshoring / nearshoring are a form of distributed software
development, which has some valuable benefits. Thus, besides
the cost reducing, the strategic reasons for a company to decide
for distributed software development can be to access the
global resource pools and to speed up the time-to-market.

The offshoring, and generally, the distributed software
development, is now a challenge. Studies reported many
failures of outsourced projects (Wiener, 2007; Karle &
Schoenthaler). The main reasons of these failures seem to be:

e The lack of adequate software development methodologies;

¢ Insufficient standardized methods and tools for software
specification, architectural design and test cases
specification (and automatic generation);

e Ignorance of the risks of offshoring;

¢ Inadequate project management;

o Insufficient control of the resulted software product quality.

Many IT specialists analyze such advanced issues about
special methodologies/tools needed for offshoring.

However, our opinion is that most of the failures in
offshoring projects have simpler reasons, mainly residing in
cultural and technical background differences between the
offshoring company and the offshoring provider — which we try
to pinpoint and tackle in this paper.

3. OUR NEARSHORING EXPERIMENT

Our experiment simulated nearshoring activities in an
academic controlled environment. We wanted to observe
directly the issues with nearshoring activities, trace and identify
their primary reasons.

The experiment was hosted by the European Intensive
Program “Nearshoring: the next step in Offshoring”
(Moldoveanu & Moldoveanu, 2008), involving:

e Hogeschool van Amsterdam (HVA), Netherland
University POLITEHNICA Bucharest, Romania,
Mid Sweden University, Sweden

EVTEK Institute of Technology, Finland
Politechnica Krakowska, Poland

e Technical University of Ostrava, Czeck Republic

Each university was involved with a team of 10 students,
supervised by 2-3 professors.

The experiment evolved through a period of 3 years.

During each year a couple of IT projects were proposed and
the teams were paired: one team played the role of the company
that uses outsourcing services (teams C —contractor) and other
team was the outsourcing service provider (teams SC -
subcontractor). There were 3 distinct phases in each year:

o Creation of specifications for IT projects, by each team C.



o Implementation following specifications, by each team SC.
Meeting with all the participants, presenting the executable
programs and discussing the results.

Each year we incorporated conclusions of previous years in
the methodology and the instructions given to student teams.

The professors’ supervisor role was minimal — just
organizational stuff and observing the activity. Teams were
supposed to be autonomous to emulate a real environment.

They were free to use any development methodologies they

considered fit to their expertise and the scope of the projects.
The resulted environment, though slightly controlled and

fully observable, was free and natural enough to emulate a real
environment, and we can extrapolate the results to industry.

4. RESULTS OF THE EXPERIMENT

4.1 Observed Aspects

Each year, we tried to observe the following aspects:

e the ability of each team to define User Requirements,

System Requirements and Software Requirements;

the methods used by teams from different countries;

the adequacy of easy method to nearshoring;

if the specification were well understood;

how much of the specified functional and non-functional

requirements were actually implemented;

e if students building the system followed the design and
testing recommendations included in the specification;

e how each team pair has communicated.

We observed these aspects both direct and

questionnaires conducted at the end of each year.

through

4.2 Main Issues

As a rough summarization, the main issues observed during the

nearshoring experiment felt into the following categories:

e Huge technical background differences between the
contractor and subcontractor teams, especially related to
Analysis & Specification activities and deliverables.

e Usage of various software development methodologies by
the contractor and subcontractor teams. For example,
during the 1% year of the experiment, the Dutch team acting
as subcontractor used most of the time to build an
incomplete version of the system, because they were used
to the DSDM method, that doesn’t require building a
complete product in the first iteration.

e Inability to check the actual understanding of the
specification — led to waste of time during implementation
and even to implementation of wrong functionalities.

e Communication issues
Some of these were gradually corrected to some degree, by

adjusting the rules each year to avoid the issues.

Our conclusion was that, apart from advanced issues that
experts try to handle, like advanced methodologies and tools,
seems that a huge part of the issues in nearshoring can come
from different technical background of the 2 involved parties.

4.3 Background Differences and Nearshoring

Different teams have different backgrounds and
perspectives on using even standardized software development
methods. This is even more likely when the teams are from
different countries or from universities with different targets.
For example, the majority of the participating students have
got, before the project, programming and database courses, but
only one Software Engineering course. But Dutch team have
got initial courses in Java, UML, RDBMS and ERD, and they
have done projects using Prince2 and DSDM.

Cultural background seems to have minimal or no influence
in European nearshoring. There is enough convergence in the
various European cultures and habits to provide a solid

foundation for any nearshoring IT project. More important in
this case are the educational background and work habits.

5. CONCLUSION

Even limited as amplitude, our study was relevant enough
to highlight deep reasons for typical offshoring/nearshoring
issues and even to suggest ways to prevent them.

Future research should aim at experimenting and measuring
the effectiveness of these ideas we conclude below.

In the offshoring/nearshoring perspective, it is important to
exist a preliminary phase, when the two teams can present and
discuss the methods, the documents templates and the notations
which will be used. This is necessary because there are not
standards that define the content and the format of the
requirements documents, not enough formalized and spread
software development methods.

It is important to choose the appropriate methods, taking
into account the specifics of the project, the specifics of the
nearshoring and the level of specialization the teams involved.
For example, the DSDM seems to be inappropriate in the
nearshoring context, as we mentioned before.

Apparently at least, classical software development
methodologies like waterfall or the iterative and incremental
life cycle, both supported by detailed specifications, seem to
give better results than the more modern but complicated
approaches (Betz & Makio, 2007) — probably due to the fact
that they are easier to understand and provide clear deliverables
and checkpoints for both parties involved in a nearshoring.

Strong communication between the involved teams is very
important. Reports and daily online meetings are very useful,
assuring the detection of misunderstandings and the possibility
of immediate correction. In particular, is very important to
check upfront then repeatedly if both parties have a common
understanding of the methods and expected deliverables.

Any company involved in the offshoring should see it also
as a learning process. Following the above rules has proven, in
the 3" year of our experiment, to allow the success of most the
proposed IT projects, which were medium-sized projects. Big
scale projects would also benefit from this approach, of course,
combined with more advanced tools for collaboration and
integrated software analysis, design and testing.

6. REFERENCES

Betz, S. & M&kio J. (2007), “Amplification of the COCOMO II
regarding Offshore Software Projects”, Proceeding of the
Workshop on Offshoring of Software Development-
Methods and Tools for Risk Management at the second
International Conference on Global Software Engineering
2007, ISBN: 978-3-86644-203-0.

Deutsche Bank Research (2006), “Offshoring to new shores -
Nearshoring to Central and Eastern Europe”, Available
from:http://www.dbresearch.com/PROD/
DBR_INTERNET_EN-PROD/
PRODO0000000000201757.pdf Accessed: 2010-06-13

Karle, T. & Schoenthaler, F., “Prevention of Failure Situations
in Offshore Software Projects”, Available from:
http://www.promatis.de/fileadmin/user_upload/documents/
Failure_Situations_Offshoring.pdf Accessed: 2010-06-13

Moldoveanu, F.; Moldoveanu A. (2008), The influence of
technical background differences in nearshoring projects —
Conclusions of the IP “Nearshoring: the next step in
Offshoring”,Available from: http://ip-nearshoring.cs.vsh.cz/
index.php?option=com_content&view=category&layout=bl
09&id=9&Itemid=13 Accessed: 2010-06-13

Wiener, M. (2007), “Successful Offshore Software
Development”, ICGSE 2007, Available from:
http://www.outshore.org/LinkClick.aspx?fileticket=061-
GMmDrl1%3D&tabid=58&mid=387 Accessed: 010-06-13





