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constructed in the following steps: 
1) Determine the minimum elements of each line of matrix C. 
2) Choose one of the lines for which the minimum element is 
unique and is denoted by r, s to its indices. 
3) Record the first line of matrix M, values r, s, crs and these 
elements is marked with crs and csr, from the matrix C. 
4) Determine minimum unmarked elements of matrix C lines 
which are marked at least one element is denoted by r, s indices 
minimal element or one of them if there is more. 
5) If on line s of matrix C exists marked elements, then is 
marked elements crs, csr too and proceed to step 6, but if on the 
line s of the matrix C has no items marked for each cis element 
located on a line is marked and equal crs it added a new line to 
matrix M consisting of values i, s, cis and is marked elements 
cis, csi from matrix C, then proceed to step 6. 
6) Proceed to step 4 or stop calculations as there are no lines or 
matrix C with nothing unmarked element. 

If the matrix M, it follows a line number greater than the 
order of the graph considered minimal tree problem has several 
solutions. In this case, allow first matrix lines so that the second 
column items are sorted ascending. The second column will be 
found only index of n-1 edges of the graph. If we note the 
absolute frequencies of these indices on the second column of 

the matrix M with Fi and the cumulative frequencies with *
iF  

(i = 1,2, ... n-1), minimal number of trees of the graph na, has 
value on the relationship : 
 

  ∏
−

=
=

1

1

n

i
ia Fn  (6) 

 
 To identify the minimal tree is constructed with a matrix A 
with n-1 lines and na column in the following stages: 
7) Be each absolute frequencies Fi are assigned to variable Vi,k 
whose values are the elements of the crowd 

( ) { } ( )1,...,2,1,, 1
*

1 −=∩= −− niNFFN iii , and 0*
0 =F . 

8) Each line i of the matrix A record ia Fn / times elements 

kiV ,  as crowd Ni such as matrix A have finally obtained with 
the lexicographic ordered columns.  
 Each column of matrix A is matrix M lines indices 
containing one edge characteristics of optimal trees. 
 Described algorithm was developed based on the language 
Borland Pascal 7, Kruskal program (Kruskal, 1956). 

Using this optimization program results make savings of 
pipelines, embankments and pumping power and a more 
homogeneous distribution of flow and pressure in the network. 
 
4. CASE STUDY 
 
An example application described above algorithm for 
determining optimal routes for a pipeline, with possible routes 
graph of order n = 8 in Figure 1, which is attached cost matrix 
C (Sârbu, 1996).  

 
 

Fig.1. Graph of possible pipeline routes 

 
Fig. 2. First optimal routes in the pipeline. 
 
 Indices crowd that lines are marked at least one item is 
denoted by L. Following algorithm steps of optimization routes 
result successively: 

Minimum elements of the first line 8013 =c  is unique, 

according to phase two: [ ]8031=M and shall be marked 

the elements 13c , 31c , in the matrix C so that { }3,1=L . 
On each column finding the lines clues of the matrix M 
containing one edge characteristics of optimal trees. 
 Thus, the first column elements of A states that one of the 
minimal graph trees is of corresponding lines 1, 2, 3, 4, 6, 7, 9 

of the matrix M. This tree is thus composed of edges 3
2u , 1

3u , 
8
4u , 2

5u , 5
6u , 5

7u , 6
8u   (Figure 2). This result is easily 

reached using Kruskal computer program. Optimal solution to 
be applied in practice is taking into account other criteria. For 
this we can impose hydraulic conditions. 
 
5. CONCLUSIONS 
 
- This study highlights how the economic fact of a technical 

problem can be optimized using mathematic-informatics 
structure type graph. 

- Mathematical model is easily programmable in an evolved 
language, obtaining immediate results. The only problem is 
populating the matrix attached graph. 

- Kruskal algorithm was originally designed for the economy, 
but the adaptation was possible because the optimal path in 
the economy is a virtual way and here is a real way. 
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