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Abstract: Hydropowers stations with large Francis turbines, 

have, generally, one penstock for each turbine. The penstocks 

are manufactured from metal sheets, bended and welded. The 

more complex part of each penstock is the penstock lower bend. 

This part is made from metal shels bordered by circles of 

different diameters, placed in inclined plans, one from each 

others. But, these important parts of the hydropowers stations 

can be manufactured in situ, in the base of a combination 

between technical and mathematical elements. This kind of 

combination was used, until now successfully in manufacturing 

of welded spiral casing and draft tubes with oval cross section 

for hydraulic turbines. The paper that we propose presents the 

mathematical elements of this method. 
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1. MATHEMATICAL ELEMENTS 
 

From mathematical point of view, any bended sheet of 

metal is a deployment surface (Bărglăzan M., 1999). 

Such a shell – considered as a ruled surface - is obtained by 

shifting in space a straight line. Some ruled surfaces are not 

deployable. 

To be deployable, a surface must accomplish a certain 

condition (Sundar Varada Raj P., 1995, Şriro I.I., 1961). 

So, if in a xOyz reference frame a deployable surface has 

the equation (1). 

 

z = f(x,y) , (1) 

 

then this surface in deployable if satisfied the differential 

equation (2) 

For the case of the spiral casing of certain hydraulic 

machines, this equation was considered from long ago, and was 

used including to patented technologies, and, also, the problem 

was studied (Vertan Gh. et al., Man E.T. et al., 2010). 
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2. THE DETERMINATION OF THE CURRENT 

POINT COORDINATED ON THE SPATIAL 

CONTOUR OF THE SHELLS 
 

For a current ruled surface for a penstock lower bend with 

oval sections A1AnBnB1 in a xOyz reference frame (figure 1 

„a”). 

The end of the shell placed in xOy plane is defined by the 

known values l1 and R1 (figure 1 „b”). The other end is placed 

in x1Oy plane, which has the angle δ with xOy plane. 

This second end is defined by the values l2 and R2 (figure 1 

„c”). 

In the plane xOy, a current point from the contour Ai is 

defined through the angle α and has the coordinates: 
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(3) 

 

At the same shell, in x1Oy plane, a current point Bi from the 

contour is determined by the angle β, which, in the plane x1Oy 

has the abscissa 

 
 

Fig. 1. Symmetrical shell of penstock lower bend 
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and in the system xOyz has the coordinates 
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(5) 

 

3. THE DETERMINATION OF THE CURRENT 

GENERATOR OF THE SURFACE 
 

For any shell of the penstock lower bend the vital problem 

consist in determining the point Bi, as function of the current 

point Ai, in such a matter that the straight line AiBi represents 

the current generator of the surface supported by the curves 

A1AiAn and B1BiBn. 

Essentially, the problem consist in determination the angle 

β as function of angle α and the rest geometrical elements, such 

as: l1, R1, δ, l2, R2: 
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4. DETERMINATION OF THE CONTOUR OF 

THE SHELL AND THE BENDINGS LINES 
 

In this purpose there is used the mathematical notion of 

geodetic curve, whose length is, generally, determined by an 

integral equation. 

The shell surface is decomposed in n quadrilateral surfaces, 

going from an initial generator A1B1 to the final one AnBn. 

The number “n” is determined to be convenable from 

technological point of view, to result finally “n” bending lines, 

uniform distributed on the whole surface of the shell. 

Then, each quadrilateral is decomposed in two triangles. 

Ones are the triangles Ai-1AiBi-1 and Bi-1BiAi, (figure 1 “a”) 

in the first hypothesis. 

In the second hypothesis, the considered triangles are      Ai-

1Bi-1Bi and Ai-1AiBi (figure 1 “a”). 

To find the length of the sides of this triangles means that 

the wholw surface of the shell is decomposed in triangles with 

known sides. 

Going from the initial generator, each triangle is developed, 

obtaining both the developing of the shell and the 

corresponding positions of the bending lines. 

Each of the four triangles, considered on the surface of the 

spatial shell (figure 1 “a”), is helded in plan and has two sides 

exactly calculable. 

One of this is the generator Ai-1Bi-1 or AiBi, and the second 

is the arc curve Ai-1Ai or Bi-1Bi. And every of this four triangles 

has a third side (Ai-1Bi or Bi-1Ai), which, on the curve surface of 

the shell is a geodetic curve. 

Considering that all the quadrilaters which compose a 

particular shell are decomposable in two triangles, following 

the procedure presented above, results that all points Ai and Bi 

(i = 2, …, n), exception A1 and B1, placed on the initial 

generator, has the coordinate approximate. 

The approximation is higher for the points An and Bn, 

which has maximum errors, the coordinates values being higher 

than the real ones. 

In order to obtain acceptable results, the shell decompose in 

nc > n quadrilaters, growing up their number, nc, until the 

difference between the coordinates calculated through both 

hypothesis are less than the accepted tolerance. 

From all this points Ai and Bi will be withhelded a “n” 

number uniform distributed on the contour of the shell; the 

number “n” will be chosen to be convenient from the 

technologic point of view. 

 

5. CONCLUSIONS 
 

The absolute value of max(׀α-β׀) differs form one shell to 

another. In industrial cases, this difference is about 1o to 5o. 

 If is considered α = β, then results small differences from 

the correct variant, but the bending lines induces technological 

difficulties, the shells differing from the correct form. 

The method based on the exposed brieffly calculus offer the 

coordinates of the points representing the contour of each 

particular shell and, also, the bending lines; this allowed 

realizing the shells at the site of the hydroelectric power plant, 

which reduce considerably the costs. 

 Determination, in the limits of accepted tolerance, of the 

coordinates of the points that represent the contour of each shell 

and, also, the ends of the bending lines, ensure the correct 

cutting off and the bending of each shell. 

This particularity ensure the technological procces of 

realizing the penstocks lower bends in the site of the 

hydroelectric power plant. 
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