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Fig. 2. Aileron in neutral position on fuselage and cut-away 
 

The numerical simulation refers to an altitude of 11km, with 
a travelling speed of Mach 2, while the surrounding pressure 
and temperature are 22632 Pa and 216.65 K, respectively. 

 
3. RESULTS OF CFD SIMULATIONS 
 

The following values for the aerodynamic coefficients of 
lift and moment in respect to the axis of tilt drawn in Figure 1 
were found, as reproduced in diagrams 3 and 4. 

The values of the reduced coefficients are given versus the 
angle of incidence. Values up to the maximal allowable tilt of 
28 degrees were computed. They agree well with the theoretical 
formulae (2). The four separate sections are fairly converging. 

For CFD simulations, four different equally spaced sections 
have been used, along with a 3D model of the complete aileron, 
thus being able to study the 2D air flow at different locations on 
the wing’s span and also providing an overall image of the 
three-dimensional flow pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Diagram of the computed lift coefficient of the aileron 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Diagram of the computed moment coefficient 

While keeping the flow parameters to the values presented 
above, the angle of incidence has been varied from 0 to 20 
degrees by 5-degree increment step with the additional value of 
the maximal pitch of 28 degrees for a complete covering. A 
total of 24 two-dimensional cases and 6 three-dimensional 
cases were simulated with the commercially available software 
Fluent (FLUENT INC., 2009). The k-omega turbulence model 
was adopted as more appropriate for the simulation. 

The use of a k-omega formulation in the inner parts of the 
boundary layer makes the model directly usable all the way 
down to the wall through the viscous sub-layer. The model 
switches to a k-epsilon behavior in the free-stream and thereby 
avoids the common k-epsilon problem that the model is too 
sensitive to the inlet free-stream turbulence properties. Authors 
who use the k-omega model often praise it for its good behavior 
in adverse pressure gradients and separating flow. Nevertheless, 
the k-omega model produces a bit too large turbulence levels in 
regions with large normal strain, like stagnation regions and 
areas with strong acceleration. This disadvantage is less 
pronounced however than that involved when a normal k-
epsilon model is used (CFD-Wiki, 2009). 
 
4. CONCLUSION 
 

A very small coefficient of aerodynamic torque is 
encountered through CFD simulations, in agreement with the 
theoretical values of the moment in respect to the middle axis 
of the symmetrical profile. In fact, with drag by viscous effects 
and due to the sweptback geometry for the aileron, a small, 
positive aerodynamic moment appears. The location of the 
focus for the entire, 3D aileron is not yet specified, although all 
the geometrical and mechanical results suffice to determine its 
position in space. Its locus is important for positioning of the 
steering axis, which must be set as close as possible to the focus 
of the 3D profile to minimize the steering couple for the driving 
mechanism. The driving mechanism will impart some of the 
power for driving the gas dynamical thrusters, which 
fortunately require a very low driving moment. 

The differences between the coefficients of the individual 
profiles at the computational sections referred to in Figure 1 are 
due to the differences in the computational conditions. While 
for the 2D profiles the flow is ideally planar, for the 3D model 
the side flow and marginal losses are allowed, fact that 
diminishes lift. Same applies for the moment coefficient. 
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