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FAULT ACCOMMODATION IN BILINEAR DYNAMIC SYSTEMS
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Abstract: Solution to the problem of fault accommodation in
bilinear dynamic systems is related to constructing the control
law which provides full decoupling with respect to fault effects.
Existing conditions are formulated and calculating relations
are given for the control law.
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1. INTRODUCTION

An increasing demand on reliability and safety for critical
purpose control systems calls for the use of fault tolerant
control (FTC) techniques. The goal of FTC is to determine such
control law which preserves the main performances of the
system when a fault occurs. There are two principle approaches
to FTC (Blanke et al., 2003; Noura et al., 2009). The first one is
self-tuning or fault accommodation. It is related to on-line
control law determination that preserves the main performances
of the system in faulty case while the minor performances may
degrade. The second way is self-organization which involves
the system reconfiguration to replace the faulty parts of the
system with the healthy ones. In (Shumsky & Zhirabok, 2009) a
solution to the accommodation problem in nonlinear systems
has been obtained on the basis of algebra of functions and
differential geometry. In present paper, this problem is solved
for bilinear systems. These systems form an important class of
nonlinear systems. They are used to represent a wide variety of
processes and systems including nuclear reactors, fermentation
processes, hydraulic systems, etc (Shields, 1995).

Consider nonlinear system X described by the equations

X0 = FX(O +Gu®) + >, hOF XO+L8O, ¥ = Hx). (1)

Here X, y, and u are the vectors of state, output, and control,
respectively; F, G, H, L, Fl, ..., F™ are known matrices of
appropriate dimensions; 9(t) e RV is the vector describing the

faults. Assume that for the healthy system the equality 9(t) =0

holds. The system (1) without the nonlinear term will be named
the linear part of (1).

It is assumed that fault detection procedure is performed by
known methods. If a fault occurs, 9(t) becomes an unknown

function, and a solution to the control problem based on model
(1) becomes impossible. To overcome this difficulty, it is
suggested to obtain the vector u(t) according to the relation

u(®) = g(y(®, xo(®), u«(t) @

for some function g where u, (t) e R™ is a new control vector,

x(t) e R®, s<n, is a state vector of the system has to be
determined and described by the equation

0 () = Foxo 0+ Gou(®+ Joy®+ . tiOFx®. (3)

Model (3) does not depend on unknown vector 9(t) and can be
used to design the observer for estimating the system state
vector when the fault occurred. Assume that the model obtained
by substation (2) into (1) can be transformed to the form

%o (t) = FaXor (£) + Ginlin (8) +Zi"llui OF % (1)) o)

with x«(t)eRP, p<q. If the control (2) exists and the fault

occurred and detected, then a solution to the control problem is
performed on the basis of model (4) which does not contain the
unknown vector 3(t). As a result, fault accommodation effect

is achieved. Scheme for the system X control is shown in Fig. 1.
The problem is to determine the existing condition for control
(2) and to obtain matrices describing the systems (3) and (4).

The limitation of the suggested approach is that the
problem of fault accommodation can not be solved for some
faults. In these cases one has to use self-organization.

2. PRELIMINARY RESUTS

So-called logic-dynamic approach (Zhirabok & Usoltsev,
2002) will be used for solving fault accommodation problem.
The feature of this approach is the use of conventional linear
algebraic tools instead of nonlinear algebraic and differential
geometric tools used in (Shumsky & Zhirabok, 2009). In the
first step of the logic-dynamic approach, replace the system (1)
with a system with transformed bilinear term as follows:

X(t) = Fx(t) + Gu(t) + Zi"llui (t)Z?:le TRy + LS, (5)

where FU s the j-th row of the matrix Fi, Gt =(10..0),
G2=(01..0),..,G"=(00..1).

In the second step, a linear part of the system (3) is
designed. It is well-known from the theory of linear systems
diagnosis that the matrix @ exists such that ®x(t) =Xq(t) in
the unfaulty case. In the absence of faults, the following set of
equations holds (Zhirabok & Usoltsev, 2002):
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Fig. 1. Scheme for system X control



OF =Fy®d+JgH, Gy =0G. )

The system (3) is independent of the unknown vector 9(t) ,
if the equality ®L =0 holds. By analogy with (5), represent a

m n P
bilinear term in (3) in the form Z 1Uiz. lG({F(;Jxo for
i= j=

some matrices Gg and Foij, i=12..,m, j=12..,n, which

must be determined. It follows immediately from definition of
the matrix @ and (6) that the following relationships hold:

oGl =GJ, Fi=Flo,i=12,.,m j=12..n.
3.SYSTEM =, DESIGN

The matrix @ can be obtained as follows. Introduce the
matrix L° of maximal row rank such that L°L=0. The

condition ®L =0 implies the equality @ = NL® for some
matrix N . Replace the matrix @ in the first equation in (6)

with NLO that gives NL°F = FgNL® + JoH and transform it:
(N —FN =3)-(L°F)" )" T =0. (@

Expression (7) can be considered as an algebraic equation for
the matrices N, Fy, and Jg. A solution to this equation gives

the linear part of the system (3) described by the equation
Xo (t) = FoXo(t) +Gou(t) + Joy(t) .

It the third step of the design, it is necessary to transform
the obtained linear system into the bilinear one. Obtain the

matrices FOij from the algebraic equations Fij:F(;jQ,
i=12...m j=12..n, and let Gg - ®G! . Denote FJ =

Zn ng FOij , 1=12,...,m, that concludes system (3) design.
J:

4. SYSTEM ZX. DESIGN

. m i .
Let the function Gou(t)+z_ lui(t)FO'xo(t) contains m’,
1=
m’ <m, components of the vector u. Without loss of generality
assume that these components are the first m’ ones:

Uy, Uy, ..., Uy . Suppose also that for all xe R" the equality

{ o
rank| —
O(ug, Uy, ..., Uyy)

G+ Y u (t)FAXO(t))}c

holds for some c. Consider the case s=C when X« (t) =Xq(t) ;
then models (3) and (4) give the equality

F**t+G**t " itF*i*t:
Xe () +Gutle () + ) U (OF % (1) ©

FoXo (1) + Gou(®)+ Joy( + Y Ui OFgxo (0.

It is a basis for obtaining equation (2). Since expression (2)
does not contain the vector X«, let F«x=0 and F!=0,
i=12,..,m. Besides to simplify a process of the system X.
control, let G« = I, that result in the following model of this
system: X (t) = U« (t), 1<i<c.

Thus to control the system (4), it is necessary to determine
the first C components of the vector ux(t) . The rest ones may

be chosen arbitrary, for example, ux(t)=0, c+1<i<m.

5. CONTROL LOW DESIGN

Consider two cases. If c=m’ and s=c, then equation (8),
equalities Fx =0, Fd =0, i=12,...,m, G. = | imply

FoXo (0 +Gou()+ Joy(®+ Y uiOFgxo@=us(0) . (9)

Since c=m’" and s=c, (9) is solvable for uy, u,,...,u, and
due to (2) these variables can be represented as follows:

Ui (t) = gi (Y1), g (t), ux (1), ..., Uuxc (1)), 1<i<c=m', (10)
for some functions g,

92, ge. Let ui®)=u4(),
m’'+1<i<m, for the rest m—m’ components. In particular, if

m=m=c, rank(G,)=c and Gg'Fj=0, i=12..,m,

equality (10) takes a form u(t) = Ggl(u*(t) —Foxo () —Joy(D)).
If c<m’ and s=c, the right hand side of (8) contains
redundant components of the vector u(t) . In this case one can

obtain only some combinations of the vector u(t) components

of the form ;i (u()=g; (Y(®)Xo (1), Usg(D)..... Usc (D)),
1<i<c, for some functions vy, y,,..., y.. In particular,

when Gy = (G« Gx), rank(G,)=rank(G.,)=c, G(j"FOi =0,
i=12,..,m, one obtains

(lexe G#-GAU(L) = Gi - (U« (1) — FoXo (t) — Jo (1))

where the matrix G« is left inverse to G«.

6. CONCLUSION

In the framework of the fault accommodation problem in
the systems described by model (1), the method of finding the
control guaranteeing full decoupling with respect to faults
effects is suggested. The feature of the method is that it uses
linear algebraic tools only. This allows using simple
mathematical packages to perform necessary calculations.
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