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this is lower than the minimum film thickness of the aligned 
case. (San Andres, 1993) 

When the Reynolds equation is integrated twice along the 
axial co-ordinate z under boundary conditions, the pressure 
distribution has the form: 
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In dimensionless form the pressure distribution is given by 
equation (10). 
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4. NUMERICAL RESULTS 
 

In Figure 1 four sketches of dimensionless pressure (p/pm) 
versus angular co-ordinate [ ]( )πθ 2;0∈  and axial co-ordinate

[ ]( )2;2 BBz −∈ , are considered, the main parameters having 
values presented in Table 1. 

These drawings are representative for the pressure 
distribution modifications due to the effect of unaligned shaft, 
in stationary case (when there are important angular 
displacements α  and β ). 

Thus, Figure 1a is a plot of the reference case, namely the 
aligned narrow journal bearing case. Pressure distribution 
occurs as a single symmetric “mountain” regarding the axial 
co-ordinate, being placed approximately in [ ]π;0  θ  domain. 

Figures 1b, 1c and 1d are dedicated to the stationary case 
when angular displacement α  is with an order greater then β . 
The differences between these cases and the reference case are 
very significant. For the lowest eccentricity ( )0=ε  two 
“pressure mountains” occur which have approximately the 
same peak. The “mountain” placed in [ ]ππ 2;  θ  domain 
decreases with the increasing of eccentricity until it disappears 
at 2.0=ε , the pressure distribution becoming strongly non-
symmetric, with a higher peak of pressure. So, it is obvious that 
this pressure distribution produces not only a load capacity, but 
a moment, too. 

 
5. CONCLUSIONS 

 
This work occurs as a hydrodynamic analysis regarding the 

problem of an unaligned narrow journal bearing. 
The stationary unaligned narrow journal bearing case 

appears as a particular case of the non-steady case, when
0== βα && . 

The pressure distribution is much different in comparison 
with the aligned case, becoming strongly non–symmetric, so it 
is obvious that this pressure produces not only a load capacity, 
but a moment too. 
Although, in the central plane the same minimum film 
thickness as in the aligned case is obtained, the minimum oil 
film thickness is inferior to that corresponding in the aligned 
case. 

The relative difference of the attitude angle is between 
25…35% in normal working conditions, and this important 
variation can badly affect the oil supplying of the journal 
bearing. 
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1a 0.5 1 0.1 0 0 0.4924 
1b 0.5 1 0 10-3 10-4 0.5282 
1c 0.5 1 0.05 10-3 10-4 0.8048 
1d 0.5 1 0.2 10-3 10-4 2.2479 

Tab. 1. The main parameters values 
 

 
Fig. 1a. Dimensionless pressure distribution – case a 
 

 
Fig. 1b. Dimensionless pressure distribution – case b 
 

 
Fig. 1c. Dimensionless pressure distribution – case c 
 

 
Fig. 1d. Dimensionless pressure distribution – case d 
 

It was observed the angular displacements and velocities 
produce strong effects on the moment attitude angle. 

As a consequence of the non–symmetric pressure 
distribution, a torque occurs. This must be taken into account 
when calculating the stiffness and the damping coefficients of 
unaligned journal bearings. This work is just a preliminary 
announcement of some results regarding these calculations. 
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